
1 INTRODUCTION 

In the conventional optimization methods for 
structures in civil and architectural engineering, the 
parameters representing the structural and material 
properties are given deterministically. However, in 
the practical design process, uncertainty in those 
parameters should be appropriately taken into 
account (Elishakoff & Ohsaki 2010). Especially for 
building structures subjected to seismic motions, the 
use of nominal value with moderately large safety 
factor does not always lead to a conservative 
estimate of responses, because the dynamic response 
nonlinearly depends on the stiffness and strength; 
hence, a smaller strength may lead to a less response 
owing to a larger plastic energy dissipation. 

Reliability-based and probabilistic approaches are 
widely used for incorporating uncertainties of 
parameters. However, it is not always possible to 
find appropriate probability distributions of 
parameters. Therefore, we utilize the concept of 
unknown-but-bounded (Elishakoff et al. 1994), and 
assume that the uncertain parameters exist in the 
specified bounded intervals. Constraints are assigned 
on the worst values of the structural responses. In 
this case, the optimization problem turns out to be a 
two-stage problem of optimization and anti-
optimization. 

Heuristic approaches have been developed for 
obtaining approximate optimal solutions of a highly 
nonlinear combinatorial problem within reasonable 
computational cost. They can be classified into 

population based approaches and those based on 
local search (Ohsaki 2010). Among various 
approaches based on local search, tabu search (TS) 
(Glover 1989) can avoid convergence to a local 
optimum, even if the number of neighborhood 
solutions to be searched is limited in a similar 
manner as the local random search (Ohsaki 2001). 

Recently, random sampling (RS) approach, or 
randomized algorithm (Mitzenmacher & Upfal 2005, 
Lipton & Naughton 1995), has been studied 
extensively for knowledge discovery (Domingo et al. 
1999), estimation of average and worst 
computational costs of an algorithm, and finding an 
approximate optimal solution of a combinatorial 
problem.  

In this study, we apply an RS approach (Ohsaki & 
Katsura 2012) to find approximate worst-case 
designs under constraints on maximum strains 
against seismic motions considering uncertainty in 
material parameters.  

2 OPTIMIZATION PROBLEM 

Consider a problem of optimizing the cross-sections 
of framed structures such as building frames, latticed 
shells, and arches. The member sections are selected 
from the pre-assigned list of standard sections. The 
members are classified into m groups, each of which 
has the same section. The design variable vector is 
denoted by 1( , , )mJ JJ , which has integer values. 
For example, if iJ k , then the members in the ith 
group have the kth section of the list. Let ( )F J  de-
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note the objective function representing, e.g., the to-
tal structural volume. The constraint functions de-
fined by structural responses are denoted by ( )iG J  
( 1, , )i n , where n is the number of constraints. 
Then, the optimization problem is formulated as 

 

Minimize ( )F J  
subject to ( )i iG GJ , ( 1, , )i n  
     {1, , }iJ s , ( 1, , )i m  
 

where 
iG  is the upper bound for ( )iG J , and s is 

the number of sampling values of variables.  
  We incorporate uncertainty in material parameters 
such as yield stress, and find the worst parameter set 
in the lower-level problem. In order to solve the two-
stage problem as a combinatorial problem, each pa-
rameter is sampled to q values using integer varia-
bles 1( , , )rI II ; i.e., iI k  means that the kth 
sampling value is assigned to the ith parameter. Then, 
the structural response is given as a function of J and 
I as ( , )iG J I . We assign constraints on the worst 
values ˆ ( )iG J  of responses, and formulate the opti-
mization problem as 

 

Minimize ( )F J  

subject to ˆ ( )iG J , ( 1, , )i n  
     {1, , }iJ s , ( 1, , )i m  
 

The worst value ˆ ( )iG I  is obtained by solving the 
following anti-optimization problem: 

 

Find    ˆ ( ) max ( , )i iG G
I

J J I  

subject to  {1, , }iI q , ( 1, , )i r  
 

Hence, the optimal solution considering the worst 
values of responses can be found by solving a two 
stage problem of optimization and anti-optimization. 

3 TABU SEARCH 

Many heuristic approaches have been developed for 
obtaining approximate optimal solutions of a 
combinatorial problem within reasonable 
computational cost. Among various approaches 
based on local search, tabu search (TS) (Glover 
1989) utilized the tabu list to avoid convergence to a 
local optimal solution and cyclic selection of a set of 
small number of solutions. The algorithm is 
summarized as follows: 
Step 1 Randomly generate an initial seed solution, 

and initialize the tabu list to be empty. 
Step 2 Generate neighborhood solutions from the 

seed solution. Select their best solution, which is 
not included in the tabu list, as the next seed 
solution, and add it to the tabu list. 

Step 3 Terminate the process and output the best so-
lution, if all neighborhood solutions are included 
in the tabu list, or the number of steps reaches the 
specified limit; otherwise, go to Step 2. 

4 SEISMIC MOTION 

Artificial seismic motions are generated using the 
standard superposition method of sinusoidal waves. 
The target acceleration spectrum is the design accel-
eration response spectrum for 5% damping specified 
for the ground of 2nd rank by Notification 1461 of 
the Ministry of Land, Infrastructure and Transport 
(MLIT), Japan, as shown in Figure 1, which is to be 
scaled by the factor 7.5. The seismic motions with 
duration 20 sec. are applied at the base in horizontal 
direction. The maximum response is evaluated as the 
mean-maximum responses among five artificial mo-
tions. 

 

 
Figure 1. Design acceleration response spectrum and the accel-
eration response spectrum of an artificial seismic motion. 

 
  A general purpose frame analysis software called 
OpenSees Ver. 2.2.2 (PEERC 2011) is used for 
seismic response analysis. The standard Newmark-β 
method (β = 0.25, γ = 0.5) is used for integration in 
time domain with the increment of 0.01 sec. The 
stiffness-proportional damping is used with 2% for 
the lowest mode.  

5 OPTIMIZATION RESULTS 

5.1 Arch-type truss model 

We consider a pin-jointed arch-type truss, called 
simply as arch, supported by two columns as shown 
in Figure 2, which represents one bay of a spatial 
structure. The span is 80 m, and the column height is 
3.5 m. The lower nodes of the arch are located on a 
circle with radius of 80 m, and the half-open angle is 
20 degrees. Both of the height of the roof truss and 
width of the column trusses are 1/40 of the span.  

The members of the arch are steel pipes modeled 
as truss elements. The members are classified into 
nine groups as shown in Figure 3. The cross-
sectional areas of the rigid members indicate in Fig-
ure 3 are fixed at a sufficiently large value. There-
fore, the number of design variables is eight; i.e., m 
= 8. The cross-sectional areas of members in each 
group are selected from the list of standard sections 
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as listed in Table 1. Each group has five candidate 
sections; i.e., s = 5.  
   

 

Figure 2. An arch-type truss model. 

 

 
Figure 3. Member groups. 

 
Table 1. List of cross-sectional areas of standard sections (m

2
). 

Chord-1 (J1) Chord-2 (J2) 

1 

2 

3 

4 

5 

8.04×10
-3

 

9.89×10
-3

 

10.62×10
-2

 

11.85×10
-2

 

15.71×10
-2

 

1 

2 

3 

4 

5 

7.02×10
-3

 

8.63×10
-3

 

9.37×10
-3

 

10.33×10
-2

 

12.01×10
-2

 

Chord-3 (J3) Col-side (J4) 

1 

2 

3 

4 

5 

10.09×10
-2

 

12.41×10
-2

 

13.49×10
-2

 

14.88×10
-2

 

19.76×10
-2

 

1 

2 

3 

4 

5 

14.17×10
-2

 

17.46×10
-2

 

18.32×10
-2

 

19.85×10
-2

 

27.87×10
-2

 

Strut-1 (J5) Strut-2 (J6) 

1 

2 

3 

4 

5 

2.99×10
-3

 

3.32×10
-3

 

3.51×10
-3

 

3.84×10
-3

 

5.36×10
-3

 

1 

2 

3 

4 

5 

1.93×10
-3

 

2.03×10
-3

 

2.12×10
-3

 

2.23×10
-3

 

2.52×10
-3

 

Strut-3 (J7) Col-mid (J8) 

1 

2 

3 

4 

5 

2.99×10
-3

 

3.32×10
-3

 

3.51×10
-3

 

3.84×10
-3

 

5.36×10
-3

 

1 

2 

3 

4 

5 

2.99×10
-3

 

3.32×10
-3

 

3.51×10
-3

 

3.84×10
-3

 

5.36×10
-3

 

 

Table 2. Natural period (sec.) of the design 3
i

J   for all 

groups. 

Mode 1 2 3 4 5 

Natural 

Period 
1.054 0.695 0.342 0.275 0.180 

 
The nodal masses are 1800.0kg for eight nodes at the 
exterior sides of two columns, and 1600.0 kg for the 
lower nodes of arch. Note that the nodal mass is as-
sumed to include the mass of steel members. The 
steel materials are idealized by a bilinear constitutive 
model with Young's modulus 2.05×10

8 
kN/m

2
 and 

hardening ratio 0.01. The nominal value of yield 
stress is 235 N/mm

2
. The effect of geometrical non-

linearity is not considered. 
The natural periods of the arch are shown in Table 

2 for the design 3
i

J   for all groups; i.e., each 
group has the third section in Table 1. It is seen from 
Figure 1 and Table 2 that the response acceleration 
will reduce if the lowest natural period increases as a 
result of plastic deformation. 

5.2 Preliminary investigation for anti-
optimization 

We first investigate the diversity of responses by car-
rying out preliminary analysis for the design 

(4,5,4,3,5,2,5,5)J . The nominal value is as-
signed for the yield stress of all members. In this 
case, members 1-5 indicated in Figure 4 undergo 
significant plastic deformation under the seismic ex-
citations. Therefore, in the following, uncertainties 
are considered in the yield stresses of these mem-
bers. 

 

 

Figure 4. Members with significant plastification. 

 

  The maximum absolute value of strains among all 

members, which is simply called maximum strain, is 

taken as the representative response quantity. The 

yield stresses of members 1-5 are sampled to five 

values 235，248，261，274，and 287 (N/mm
2
), 

because the nominal value indicates the lower bound. 

Therefore, the total number of combinations of the 

parameters is 55 3125 . 
The maximum strains of all 3125 parameter sets 

are computed to find the discrete probability density 
as shown in Figure 5. The maximum and minimum 
values are 1.414×10

2
 and 5.0321×10

3
, respective-

ly. 
 

 
Figure 5. Discrete probability density of maximum strain by 

enumeration for the design (4,5,4,3,5,2,5,5)J . 
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In order to find approximate worst (maximum) 

value with small computational cost, 200 worst 

solutions among 3125 solutions are assumed to be 

approximate worst solutions. Suppose we carry out 

100 random sampling with replacement. Then, the 

probability that no approximate solution is found is 
100(2925 / 3125) 0.00134 , which is sufficiently 

small. Therefore, in the following, the number of 

analyses is limited to 100. 

5.3 Anti-optimization for finding worst values 

The performance of RS for anti-optimization is 
compared with that of TS, where the number of 
neighborhood solutions is 5 and the number of steps 
is 20; i.e., the total number of analyses is 100, which 
is the same as RS. Anti-optimal solutions are found 
from four different random seeds, which are denoted 
by Cases 1-4. 
  The maximum, minimum, and mean values as 
well as the standard deviation of the maximum strain 
by TS are listed in Table 3 for the design 

(4,5,4,3,5,2,5,5)J . The order of the maximum 
value is also listed in the last row. As is seen, good 
approximate worst values are found for all four cases. 
The mean values are close to the maximum values, 
which means that the solutions near the worst 
solutions are extensively searched.  

The discrete probability density of the maximum 
strains of the solutions searched by TS is plotted for 
Case 1 in Figure 6. It is seen from Figures 4 and 6 
that TS searches the solutions in the dense regions in 
the objective function space. 

 
Table 3. Anti-optimization results of TS for the design 

(4,5,4,3,5,2,5,5)J . 

Case 1 2 3 4 

Max (10
-2

) 1.3892 1.3892 1.3892 1.3888 

Min (10
-3

) 5.0686 5.2790 5.1118 5.2986 

Mean (10
-2

) 1.1542 1.1490 1.1783 1.2146 

Std. dev.(10
-3

) 2.6428 2.6991 2.6986 2.4496 

Order 64 64 64 73 

 

Figure 6. Discrete probability density of maximum strain by TS 

for the design (4,5,4,3,5,2,5,5)J . 

 

The results of RS are listed in Table 4. The 
discrete probability density for Case 1 is plotted in 
Figure 7. As is seen, good approximate worst values 
are found for all four cases with 100 analyses, which 
is less than 1/30 of the total number of the solutions. 
The advantage of RS over TS is that no problem-
dependent parameter exists for RS. It is also noted 
that RS searches the solutions widely in the 
objective function space. 

 
Table 4. Anti-optimization results of RS for the design 

(4,5,4,3,5,2,5,5)J . 

Case 1 2 3 4 

Max (10
-2

) 1.3901 1.4003 1.3892 1.4078 

Min (10
-3

) 5.1694 5.2081 5.2132 5.2576 

Mean (10
-2

) 8.8714 8.5366 9.4025 8.4621 

Std. dev.(10
-3

) 3.1837 3.3662 3.1827 2.9676 

Order 48 31 64 9 

 

 
Figure 7. Discrete probability density of maximum strain by RS 

for the design (4,5,4,3,5,2,5,5)J . 

 

5.4 Performance of optimization and anti-
optimization by RS 

The cross-sectional areas of eight groups are 
optimized considering uncertainty in yield stresses of 
five members. RS is used for both optimization and 
anti-optimization, where the number of sampling is 
100; hence, the total number of analyses is 10000. 
The upper-bound strain is 1.016×10

-2
, which is 8 

times as large as the yield strain. 

 
Table 5. Optimal cross-sectional areas obtained by RS. 

Member group Cross-sectional area (m
2
) 

Chord-1 

Chord-2 

Chord-3 

Col-side 

Strut-1 

Strut-2 

Strut-3 

Col-mid 

9.89×10
-3

 

9.37×10
-3

 

13.49×10
-3

 

14.17×10
-3

 

5.36×10
-3

 

2.03×10
-3

 

3.84×10
-3

 

5.36×10
-3
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Figure 8. Discrete probability density of maximum strain by 

enumeration for the optimum design by RS. 

 
  The optimal cross-sectional areas are listed in 

Table 5. Enumeration is first carried out for all the 
parameter sets of the optimal solution to obtain the 
discrete probability density in Figure 8. The 
maximum strain is 6.181×10

-3
, which is far less than 

the upper bound. In order to investigate the 
performance of RS in anti-optimization, RS is 
carried out for the optimal solution from four 
different random seeds to obtain the results in Table 
6. Enumeration is also carried out to find the order in 
Table 6. The discrete probability distribution for 
Case 1 is plotted in Figure 9. 
  As seen from Table 6, good approximate solutions 
are found by RS, because the orders of the solutions 
are sufficiently small. Furthermore, the maximum 
values are close to 6.181×10

-3
 in the process of 

optimization, which indicates applicability of RS for 
anti-optimization as the lower-level problem of 
optimization. 

 
Table 6. Anti-optimization results of RS for the optimum de-
sign obtained by TS. 

Case 1 2 3 4 

Max (10
-2

) 6.1813 6.1808 6.1813 6.1808 

Min (10
-3

) 4.4766 4.4754 4.4754 4.4766 

Mean (10
-2

) 5.5337 5.6282 5.5695 5.6546 

Std. dev.(10
-3

) 6.5308 5.6508 6.3199 5.6015 

Order 45 135 45 135 

 

 
Figure 9. Discrete probability density of maximum strain by RS 

with different random seed for the optimum design by RS. 

 

5.5 Comparison of optimization and anti-
optimization by RS and TS 

The optimal cross-sectional areas to minimize the 
total structural volume are found using TS and RS, 
respectively, for both of optimization and anti-
optimization. The numbers of neighborhood 
solutions and steps in TS are 5 and 20, respectively, 
and the number of selections in RS is 100 for both of 
optimization and anti-optimization.  
 
Table 7. Result of optimization and anti-optimization result by 
TS. 

Member group Cross-sectional area (m
2
) 

Chord-1 

Chord-2 

Chord-3 

Col-side 

Strut-1 

Strut-2 

Strut-3 

Col-mid 

9.89×10
-3

 

9.37×10
-3

 

10.09×10
-3

 

19.85×10
-3

 

3.51×10
-3

 

2.12×10
-3

 

3.84×10
-3

 

3.51×10
-3

 

Member number Yield stress (N/mm
2
) 

1-5 287 

 

The optimal cross-sectional areas and worst 
parameter set of the optimal solution are listed in 
Tables 7 and 8 for TS and RS, respectively. The total 
structural volume by TS is 7.281m

3
, and the 

maximum strain is 7.074×10
-3

. For RS, the total 
structural volume is 7.575 m

3
, and the maximum 

strain is 6.181×10
-3

.  
The reduction of total structural volume (8.828 m

3
) 

from the standard model is 7.5% by TS and 14.2% 
by RS. In this case, a better solution has been found 
by RS than TS. 

 
Table 8. Result of optimization and anti-optimization result by 
RS. 

Member group Cross-sectional area (m
2
) 

Chord-1 

Chord-2 

Chord-3 

Col-side 

Strut-1 

Strut-2 

Strut-3 

Col-mid 

9.89×10
-3

 

9.37×10
-3

 

13.49×10
-3

 

14.17×10
-3

 

3.32×10
-3

 

2.23×10
-3

 

5.36×10
-3

 

5.36×10
-3

 

Member number Yield stress (N/mm
2
) 

1, 2 

3 

4 

5 

261 

274 

235 

287 

6 CONCLUSIONS 

Worst-case designs have been found for a pin-jointed 
arch subjected to seismic motions. The design 
problem is formulated as a two-level problem of 
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optimization and anti-optimization. The optimal 
cross-sectional areas are found in the upper problem 
to minimize the total structural volume from the list 
of standard sections under constraint on the worst 
value of the maximum strains. The worst value is 
found by solving the lower anti-optimization 
problem considering uncertainty in the yield stresses 
of steel members. 
  The performances of TS and RS are have been 
first investigated for the anti-optimization problem 
in comparison to the enumeration results. It has been 
shown that good approximate solutions are 
consistently found by RS without any problem-
dependent parameters. TS and RS has been next 
applied to the two-level problem of optimization and 
anti-optimization. The results show that RS can be 
successfully applied to a two-level problem with 
integer design variables and parameter sets. 
  It should also be noted that RS is very effective 
when many response quantities such as maximum 
displacements, accelerations, etc., should be 
considered.  
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