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Abstract
An optimization approach is presented for parameter identification of a constitutive model of steel materials. The vari-
ables are the yield stress, the hardening coefficients, and the ratio of isotropic hardening to the total hardening including
kinematic hardening. The objective function to be minimized is the error between the stresses of experimental and numer-
ical results under specified cyclic deformation. We discretize the variables into integer values, and formulate the problem
as a combinatorial optimization problem. Some tools of statistical analysis and data mining are used to improve accuracy
of solution. The hardening coefficients for specific structural experiments are identified from the monotonic uniaxial tests
using a heuristic approach called tabu search. It is shown that the relation between the bending moment and the average
deflection angle can be successfully simulated for symmetric, asymmetric, and random loading protocols.
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1. Introduction
In the fields of mechanical engineering and material science, various constitutive models, including Armstrong-Frederic
model, multi-layer model, and bounding surface model, have been developed for simulating cyclic elastoplastic behavior
of steel materials [1]. In contrast, one of the important and distinct properties of rolled mild steel materials used in civil
and architectural engineering is the existence of a sharp yield plateau at the first yielding [2].

The Bauschinger effect should also be incorporated to simulate different characteristics between the first and sub-
sequent loadings. We developed a semi-implicit model based on explicit evaluational rule using the von Mises yield
condition and implicit and heuristic rule of a piecewise-linear combined isotropic-kinematic hardening [3]. Different
rules are used for the first and subsequent loading states.

In this study, we present an optimization approach to parameter identification of the constitutive model of rolled
mild steel materials. The variables are the yield stress, hardening coefficients, and the ratio of isotropic hardening to the
total hardening including kinematic hardening. The objective function to be minimized is the error between the stresses
of experimental and numerical results under specified cyclic deformation. Since the optimization problem is highly
nonlinear, we discretize the variables into integer values, and formulate the problem as a combinatorial optimization
problem. Another difficulty in parameter identification is that the feasible regions of parameters are very difficult to
assign without anya priori knowledge. Furthermore, the redundancy of material parameters becomes significant if the
accuracy of the stress-strain relation is to be improved uniformly throughout the cyclic process; i.e., there are many
different solutions that have approximately the same objective value as the optimal solution. In order to overcome these
difficulties, we employ some techniques of data mining and statistical analysis. The effectiveness of the proposed method
is demonstrated through simulation of cyclic material test, and structural test results of cantilever subjected to cyclic
deformation.

2. Constitutive model of steel material
Consider a steel material model based on von Mises yield criterion and linear hardening. Let ¯ep denote the equivalent
plastic strain. The hardening coefficienth(ēp) is divided into two parts of kinematic hardening and isotropic hardening as

h(ēp) = cKh(ēp) + cIh(ēp) (1)

wherecK andcI , satisfyingcK + cI = 1, are the parameters for defining the ratios of kinematic hardening and isotropic
hardening, respectively. We defineh(ēp) as a piecewise-linear function of ¯ep.

In order to model the yield plateau at the first plastic loading, different functions are assigned forh(ēp) for the first and
subsequent loadings. The increment from re-loading point is used for ¯ep of the subsequent loading. Furthermore, a small
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Figure 1: Stress-strain relation for first and second
loadings.
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Figure 2: Hardening properties at re-loading.
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Figure 3: Re-loading in a process of asymmetric cyclic loading.

interval with negative ratioc(1)
I of isotropic hardening is assigned after the first yielding, because the difference of stresses

at the unloading point B and the re-loading point C in Fig. 1 is smaller than the twice of yield stress.
Let σ̂ denote the equivalent stress. The maximum value of ˆσ experienced so far is denoted by ˆσmax. The size of yield

surface increases with the cyclic deformation if ˆσ is greater than ˆσmax; otherwise, the stress-strain relation exhibits a loop
of constant size. Therefore, the different valuesc(2)

I andc(3)
I are used for the cases ˆσ < σ̂max andσ̂ ≥ σ̂max, respectively,

for subsequent loadings.
In the process of uniaxial cyclic loading as shown in Fig. 2, the stress-strain relation follows the previous curve ADEK

after unloading at ‘A’ and direction reversal at ‘B’ after elastic deformation. In contrast, the stress-strain relation follows
a different curve HIJ after unloading at ‘E’, loading at ‘F’, and unloading at ‘G’. In order to model this property, stresses
at the previous and the second previous unloading point are recorded asσ(−1) andσ(−2), respectively, as shown in Fig. 3.
The stress-strain relation follows the original curve, if the norm ofσ(−1) − σ(−2) is smaller than the specified value, or the
reloading occurs without loading in the opposite direction.

3. Parameter identification
3.1 Formulation of optimization problem
The parameters are identified using the cyclic material test results in [6]. Young’s modulus is identified from the initial
elastic stiffness. The hardening coefficients in the initial (curve 1) and subsequent (curve 2) loadings are denotes by
subscripts 1 and 2, respectively, and the same value is given for the cases ˆσ < σ̂max andσ̂ ≥ σ̂max in curve 2. The values
in theith interval ofēp in each curve are denoted by the superscript [i]. A small value is given forh[2]

1 on the yield plateau,
as well as the threshold values classifying curves 2 and 3.

Let σ̃(ti) andε̃(ti) denote the stress and strain at timeti of theith step of pseudo-static cyclic test. The stress simulated
by cyclic analysis in the same condition as the experiment is denoted as ˆσa(ti). Then the objective function is defined as

Ẽ(X) =

√
1
|P|
∑
i∈P

[σ̂a(ti) − σ̃(ti)]2 (2)
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Table 1: Upper and lower bounds of variables.

lower bound upper bound (Step 1) updated upper bound (Steps 2, 3, 4)
X1 = c(1)

I −20.0 −10.0 −10.0
X2 = c(2)

I 0.0 0.02 0.02
X3 = c(3)

I 0.3 0.8 0.67
X4 = h[1]

1 80000.0 180000.0 180000.0
X5 = h[1]

2 20000.0 120000.0 110000.0
X6 = h[2]

2 10000.0 80000.0 45000.0
X7 = h[3]

2 5000.0 10000.0 10000.0
X8 = h[4]

2 1000.0 8000.0 8000.0
X9 = h[5]

2 100.0 5000.0 5000.0
X10 = h[6]

2 100.0 5000.0 4500.0
X11 = h[7]

2 100.0 5000.0 3800.0
X12 = σ

0
y 260.0 270.0 270.0
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Figure 4: Histogram of objective functionE(J) (Step 1).

whereX = (X1, . . . ,Xm) is the vector ofmvariables consisting of hardening coefficients, the ratios of isotropic hardening,
and the yield stressσ0

y. Note that the error is evaluated only in the plastic loading state denoted byP.
Let n2 denote the number of intervals in curve 2. The following constraints are given so that the hardening coefficient

is a non-increasing function of the equivalent plastic strain.

h[i]
2 ≥ h[i+1]

2 , (i = 1, . . . , n2 − 1) (3)

In the following results, the units of length and force are mm and N, respectively, which are omitted for brevity. Since
the objective function is a highly nonlinear function of the variables, the variables are discretized and represented, as
follows, by s integer valuesJi ∈ {1, ..., s} (i = 1, . . . ,m) with the upper and lower boundsXU

i andXL
i for Xi , as shown in

Table 1:

Xi = XL
i +

Ji − 1
s− 1

(XU
i − XL

i ), (i = 1, . . . ,m) (4)

Therefore, all properties are functions ofJ, and the objective function is denoted byE(J).

3.2 Result of parameter identification
The 12 variables defined in Table 1 are sampled to 20 values, i.e.,s= 20, and random selection is carried out 2000 times
with replacement. The range of objective functions by 2000 selections is [14.22, 771.16]. This process is called Step 1,
and its distribution of objective value is shown in Fig. 4.

The probabilityP(a) such that one of the besta% solutions cannot be obtained after 2000 random selection is (1−
0.01a)2000; i.e., P(1) = 1.86× 10−9, P(0.5) = 4.43× 10−5, andP(0.1) = 0.1352. Therefore, the probability of obtaining
a best 0.5% solution is more than 99.99%. However, the number of 0.5% solutions is 2.048× 1013 out of the total
2012 = 4.096× 1015 solutions. If we assume the objective value is uniformly distributed, the error in the objective
value is 3.785, which is equal to 0.5% of the range [14.22, 771.16]. Since the distribution is non-uniform and has large
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Table 2: Optimal solutions of four steps.

Step 1 Step 2 Step 3 Step 4
X1 = c(1)

I −12.105 −14.737 −17.89 −17.89
X2 = c(2)

I 0.00211 0.00211 0.00316 0.00316
X3 = c(3)

I 0.58947 0.65053 0.63105 0.63105
X4 = h[1]

1 180000 169470 143160 143160
X5 = h[1]

2 41053 62632 45000 45000
X6 = h[2]

2 32105 45000 45000 45000
X7 = h[3]

2 9210.5 5526.3 8947.4 8947.4
X8 = h[4]

2 6894.7 2047.4 5052.6 5052.6
X9 = h[5]

2 2678.9 2047.4 3039.5 3039.5
X10 = h[6]

2 1389.5 2047.4 1026.3 1026.3
X11 = h[7]

2 615.79 2047.4 878.95 878.95
X12 = σ

0
y 267.37 264.21 264.21 264.21

Error 14.217 14.117 12.082 12.082

density in the region of small objective value, as shown in Fig. 4, we can have conservative estimate by assuming uniform
distribution. The best solution is listed in the first column of Table 2.

In the following, the 100 best solutions out of 2000 solutions are regarded as decent solutions, or approximate optimal
solutions, where the objective value of the 100th solution is 34.6366. The properties of decent solutions are investigated
to improve the accuracy of solutions. The first row of Table 3 (Step 1) shows the mean value and standard variation of
each integer variable in decent solutions, which shows that standard deviation is very large.

In order to clarify redundancy of variables, which leads to large deviation of decent solutions, the contribution of each
variable on objective value is investigated using theχ-square test of goodness of fit. A data mining tool called WEKA Ver.
3.6 [7, 8] is used for this purpose. The decent solutions and other solutions are categorized as ‘SMALL’ and ‘LARGE’,
respectively.

By carrying out ‘ChiSquareAttributeEval’ without cross-validation, we obtain the following output:

Ranked attributes:

88.583 6 J6

45.731 3 J3

31.609 5 J5

24.397 11 J11

23.913 10 J10

21.634 2 J2

10.453 4 J4

0 1 J1

0 8 J8

0 9 J9

0 12 J12

0 7 J7

Since the number of categories is 2, theχ2-distribution of freedom 1 is to be used, andχ2
0.05(1) = 7.879. Therefore,

the objective function is not independent ofJ6, J3, J5, J11, J10, J2, andJ4 with confidence 5%. Multiple linear regression
of objective function is also carried out for 2000 solutions as shown in Table 4. As is seen, all P-values ofJ9 andJ12 are
very large; therefore, these variables have small effect on the objective function. This is because the feasible region [260,
270] for J12 is small enough, and the values ofJ6, . . . , J12 are adjusted so that Eq. (3) is satisfied. We can confirm also
from Table 4 that the objective value strongly depends onJ3 andJ6, because their coefficients are very large.

We next use a machine learning algorithm called ‘alternating decision tree’ (ADTree) to identify properties of variables
to search smaller feasible region. Standard approaches of decision tree, such as J48, which is a Java implementation of
C.45, are also available in WEKA. However, the output of J48 is difficult to interpret. In contrast, the result of ADTree is
described by contribution score at each node, which is to be summed to the leaf to find the total contribution. Using the
tool implemented in WEKA, we obtain the results in Fig. 5.

We can see from this result that 95% of the solutions is correctly classified to SMALL or LARGE. The number
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Table 3: Mean value and standard deviation of decent solutions sampled to integer values.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

Step 1 mean 9.70 8.95 6.66 11.25 8.61 5.93 10.45 9.39 9.79 8.12 8.23 9.49
std. dev. 5.72 5.11 4.24 5.51 4.57 3.61 6.05 5.78 5.48 4.67 4.34 5.99

Step 2 mean 11.37 7.48 10.47 11.37 9.11 10.59 10.92 9.25 9.82 6.95 8.30 10.05
std. dev. 5.33 4.64 5.47 4.89 5.19 5.26 6.18 5.64 5.82 4.23 4.32 6.29

Step 3 mean 11.51 8.06 9.63 11.40 8.84 11.38 10.75 8.63 10.16 7.29 8.54 9.00
std. dev. 5.70 4.58 5.16 5.34 4.93 5.37 6.13 5.05 – 4.44 4.49 –

Step 4 mean 10.32 6.35 – 11.38 9.05 11.49 11.18 10.34 – 6.16 7.65 –
std. dev. 5.38 3.73 – 5.79 4.98 5.28 5.69 4.97 – 3.39 4.04 –

Table 4: Result of multiple linear regression of objective function (Step 1).

Coef. Std. dev. t P-value
Section −313.2 9.1995 −34.04 0.0000
J1 4.743 0.2480 19.12 0.0000
J2 6.260 0.2447 25.58 0.0000
J3 15.71 0.2487 63.18 0.0000
J4 −3.793 0.2469 −15.36 0.0000
J5 5.376 0.2495 21.55 0.0000
J6 11.67 0.2516 46.38 0.0000
J7 1.388 0.2462 5.635 0.0000
J8 1.797 0.2480 7.245 0.0000
J9 0.522 0.2463 2.119 0.0342
J10 1.680 0.2440 6.884 0.0000
J11 1.736 0.2476 7.013 0.0000
J12 0.314 0.2467 1.274 0.2030

in parentheses is the order of boosting. The categories SMALL and LARGE are converted to real values−1 and 1,
respectively. Therefore, a smaller value indicates large possibility to be classified as SMALL. It is seen from this result
that the relationJ6 ≤ 10，J3 ≤ 14，J11 ≤ 14，J10 ≤ 17, orJ5 ≤ 17 leads to a large chance to select a decent solution.
Therefore, the upper bounds are modified as the last column of Table 1, and we carry out another random selection (Step
2). The range of objective function in Step 2 is [14.12, 397.46], which is smaller than Step 1. The histogram of objective
function is plotted in Fig. 6. We can confirm from Figs. 4 and 6 that solutions with small objective values are searched in
Step 2.

Variation of decent solutions in integer variable is still very large as shown in Table 3. Therefore, there are some
redundant variables. We confirmed from linear regression of the objective function that the contribution ofJ9 andJ12 are
very small. Therefore, we fixJ12 at the optimal value of Step 2, and computeJ9 as mean value ofJ8 andJ10 for each
randomly generated solution. By carrying out this step called Step 3, the region of objective function is reduced to [12.08,
375.70]; however, standard variation of each integer variable is not reduced as shown in Table 3.

Another linear regression is carried out for 2000 solutions generated in Step 3 to find that the contribution ofJ3 andJ5

are very large. Therefore, linear regression ofJ3 is done for decent solutions to obtain the following approximate formula:

J3 = 43.05− 0.7235J1 − 0.9485J2 + 0.61147J4 − 0.9136J5 − 0.7520J6 − 0.2068J7 − 0.4143J8 (5)

where the nearest integer is assigned from the right-hand-side value of Eq. (5). The result of random selection (Step 4)
using this formula leads to the region [12.08, 162.57] of objective function, which have smaller upper bound than Step 3.
The variation of decent solutions is reduced as shown in Table 3 except two variables. The optimal solutions obtained in
each step is listed in Table 2. We can see that very different solutions are found in four steps. The stress-strain relation of
the optimal solution of Step 4 is plotted in Fig. 7, which shows good agreement with the experimental result.

4. Analysis of cantilever
To verify that the effectiveness of the proposed method in application to structural analysis, elastoplastic cyclic analysis

is carried out for the cantilever consisting of rolled wide-flange section H-244×175×7×11. The left end of the cantilever
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| (1)J6 < 10.5: -0.313

| (1)J6 >= 10.5: 0.923

| | (5)J1 < 8.5: -0.318

| | (5)J1 >= 8.5: 1.912

| | (9)J3 < 6.5: -0.423

| | (9)J3 >= 6.5: 0.787

| | | (10)J7 < 19.5: 1.261

| | | (10)J7 >= 19.5: -0.965

| (2)J3 < 14.5: -0.18

| (2)J3 >= 14.5: 1.234

| | (7)J2 < 5.5: -0.602

| | (7)J2 >= 5.5: 1.519

| (3)J11 < 14.5: -0.168

| (3)J11 >= 14.5: 0.95

| | (8)J2 < 8.5: -0.368

| | (8)J2 >= 8.5: 1.485

| (4)J10 < 17.5: -0.089

| (4)J10 >= 17.5: 1.999

| (6)J5 < 17.5: -0.083

| (6)J5 >= 17.5: 1.826

Legend: -ve = SMALL, +ve = LARGE

Tree size (total number of nodes): 31

Leaves (number of predictor nodes): 21

Correctly Classified Instances 1900 95 %

Incorrectly Classified Instances 100 5 %

Kappa statistic 0

Mean absolute error 0.117

Root mean squared error 0.218

Relative absolute error 122.5563 %

Root relative squared error 100.0348 %

Total Number of Instances 2000

=== Confusion Matrix ===

a b <-- classified as

0 100 | a = SMALL

0 1900 | b = LARGE

Figure 5: Output of ADTree.
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Figure 6: Histogram of objective functionE(J) (Step 2).

is clamped, and forced vertical displacement is given at the right end. The (forced) average deflection angleθ of the beam
is defined by dividing the tip displacementδ by the beam lengthL = 800 mm. We use ADVENTURECluster [9] for finite
element analysis utilizing solid elements.

The web and flange are made of the same material SS400 with different yield stresses. The material is the same as the
cyclic test; however, it is made from a different lot, and only monotonic test result is available. Therefore, we carry out
another parameter optimization using tabu search to determine the hardening coefficients, whereas the properties of cyclic
loading are obtained from the optimal solution of Step 4 in the previous section.

Let a denote the vector of variables consisting of hardening ratios. The algorithm of TS is summarized as follows:

S1 Assign an initial seed solution fora, and initialize the tabu listT to be empty.

S2 Generate neighborhood solutions of the current seed solution and move to the best feasible solutiona∗ among them
that is not included in the tabu listT.

S3 Add a∗ to T. Remove the oldest solution inT if the length of the list exceeds the specified limit.

S4 Accept a∗ as the next seed solution and go to S2 if the number of steps is less than the specified limit; otherwise,
output the best solution and terminate the process.
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Figure 7: Result of cyclic test (Step 4).
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Figure 8: Cantilever with wide-flange section.

The neighborhood solutions are generated using a random numberτ ∈ [0,1]. Each variable is increased ifτ ≥ 2/3,
decreased ifτ < 1/3, and is not modified if 1/3 ≤ τ < 2/3. The number of neighborhood solutions is 8, and the number
of steps is 50. In order to improve accuracy, optimization is carried out from five different initial random seeds, re-sample
the variables, as follows, around the best solution.

Yamadaet al. [6] conducted physical experiments of three different loading patterns RH1, RH2, and RH3 described
in terms of deflection angles as shown in Fig. 9: the loading pattern RH1 is symmetric, RH2 gradually deflects in one
direction, and RH3 is random.

To investigate the accuracy of the proposed constitutive model for simulation of responses of the cantilever against
relatively complex loading patters, the cantilever is discretized using hexahedral finite elements with linear interpolation
function. The flanges and web are divided into three layers. The numbers of elements and nodes in the numerical model
are 2700 and 3844, respectively.

For the symmetric loading pattern RH1, the relation between the deflection angle and the bending moment at the
fixed end is shown in Fig. 10(a), where the solid and dashed lines respectively stand for experimental and numerical
results. For the more complex loading patterns RH2 and RH3, the numerical results together with the experimental results
are respectively plotted in Figs. 10(b) and (c). As is seen, the responses evaluated using the proposed model has good
accuracy for even these asymmetric loading patterns. It should be noted here that the constitutive parameters are identified
using the cyclic and monotonic coupon tests only, and no tuning has been made for the results of cantilever subjected to
different loading conditions.

5. Conclusions
An optimization approach has been presented for parameter identification of steel materials using random selection and
tabu search. Accuracy of solution can be improved utilizing methods of data mining and statistical analysis. The randomly
selected solutions are classified into decent (approximate optimal) solutions and other solutions. The important parameters
to find a decent solution are identified byχ2-test and correlation analysis. The possibility of searching decent solutions
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Figure 9: Loading protocols for the cantilever.
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Figure 10: Results of asymmetric loading patterns; solid line: analysis, dotted line: experiment
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can be improved using a decision tree to restrict the variables into smaller ranges.
The material parameters of steels such as hardening coefficients and ratio of isotropic hardening can be identified by

the proposed method to simulate the result of cyclic material test with good accuracy. It has also been confirmed that the
elastoplastic responses of cantilever subjected to cyclic loads can be accurately simulated using the proposed optimization
method for parameter identification of piecewise linear combined hardening.
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