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Summary 

Stability and constructability of a latticed shell with hexagonal grids are investigated. The grid is 
assembled with pairs of members connected by joints. The latticed shell with uniform lengths of 
members is first obtained using the optimization approach developed by the first and fourth authors. 
The lift-up process is also simulated using a large-deformation finite-element analysis. It is shown 
through the numerical simulation and a prototype physical model that surfaces with various shapes 
can be constructed using uniform-length hexagonal grids assembled with several types of 
connections. 
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1. Introduction 

There exist many papers on shape optimization of free-form shells modeled by parametric surfaces 
such as Bézier surfaces and NURBS (Non-Uniform Rational B-Spline) surfaces [1]. However, most 
of them are concerned with mechanical properties. In architectural design, we have to consider non-
mechanical properties including aesthetic properties and constructability that are difficult to define 
in explicit forms. Especially for a free-form shell, it is very important to formulate the design 
problem considering mechanical and non-mechanical performances, because there exists a strong 
interaction between its shape and mechanical performances [2-4]. 

Shape optimization has also been studied for latticed shells defined by parametric surfaces [5,6]. 
For a latticed shell, locations of nodes and members are also to be optimized [7], and the 
constructability plays a key role as the non-mechanical performance. Ogawa et al. [8] maximized 
the linear buckling load under constraint on the variances of lengths of members that are classified 
into several groups. However, in their work, the surface shape is fixed; therefore, the latticed shell 
with uniform member lengths was not obtained. 

It is very important in practical design and construction of latticed shell that the number of different 
parts including joints and members should be restricted to reduce the cost and period for 
construction. It is well known that the grids with uniform mesh can be generated for regular 
surfaces such as sphere and cylinder [9]. Recently, the latticed shells with hexagonal grids have 
been extensively studied [10-13]. Hexagonal grids can also be utilized for cable nets [14]. However, 
effect of joint connectivity on stability, stiffness, and constructability has not been fully explored.  

In this study, we investigate mechanical properties of a new type of hexagonal-grid shell. The grid 
is realized as an assemblage of a unit consisting of a pair of members, which are connected by a 
joint and have the same length. The units are first assembled on a plane, and the curved surface is 
formed through a lift-up process. Some degrees-of-freedom (DOFs) are released on the plane to 
have an unstable mode of mechanism, and the DOFs are consecutively fixed through the lift-up 



process to ensure the stability when the final surface is formed. A finite-element analysis package 
called ABAQUS is used for simulation of the lift-up process. The stability of the structure at the 
final shape and the unstable modes during the lift-up process are investigated through the 
eigenvalue analysis of free vibration. A prototype model is constructed for a small-scale latticed 
shell to verify the lift-up process and stability of the final shape simulated using the numerical 
analysis. The latticed shell proposed in this study may be effectively used for various types of 
surfaces for temporary structures. 

2. Stability of Hexagonal-Grid Latticed Shell 

Consider a latticed shell with hexagonal grids as shown in Fig. 1(a). The size of latticed shell is 
designated by the number D  of division in the meridian direction; i.e. 3D =  for the shell in Fig. 
1(a). 
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(a)      (b) 

Fig.1:  A hexagonal-grid latticed shell (D=3); (a) diagonal view, (b) assemblage of units 

 

The local coordinates of a member are defined as shown in Fig. 2 for a member connecting 

nodes i  and j  ( )i j< . The following notations are used for indicating moments at member ends: 

M1:   bending around axis 1 

M2:   bending around axis 2 

T:   torsion around axis 3 

 
 

 
Fig 2:  Definition of local coordinates 

 

Latticed shells with hexagonal grids of uniform member lengths are assembled using the pair of 

members, called units, as shown in Fig. 3 in order to generate various shapes from simple units. 

The member-end numbers are defined in Fig. 3. Fig. 4 shows an example of release conditions at 

member ends, which means that M1 and T are released at member ends (1) and (4). This way, 

various release conditions can be assigned. 
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node i 



 
 

Fig. 3:  A unit consisting of a pair of members, and its member-end numbers 

 

 
 

Fig. 4:  Example of release conditions at member ends 
 

Since a member that is not supported in space has six generalized force components (three forces 

and three moments) at each of two member ends and six equilibrium conditions (three translational 

and three rotational, the number of independent force components of each member is six. Therefore, 

the statical indeterminacy p  of a rigidly-jointed frame with m  members, n  nodes, and k  

constraints at the supports is given as [15] 

 

6 6p m n k= − +
      (1)

 

Let r  denote the total number of released moment components at member ends. If the member ends 

with released moments are distribured appropriately in the structure so that there exist no local 

instability, the statical indeterminacies of hexagonal-grid latticed shells with 3D =  and 4 are given 

in Table 1. 

 

Table 1:  Statical indeterminacies of hexagonal-grid latticed shells 

   

Division D  in meridian 

direction 
3 4 

Hexagonal grids 19 37 

Nodes 54 96 

Constrained DOFs k  k  

Released member-end 

moments 
r  r  

Members 72 132 

Statical indeterminacy 108 k r+ −  231 k r+ −  

 

3. Stability of Hexagonal-Grid Latticed Shell 

The effect of release of moments at member ends on stability of the latticed shell is investigated 
using a hexagonal grid with 3D =  as shown in Fig 1(a). The numbers of some nodes and members 
are indicated in Fig. 5. X- and Y-coordinates are located on the plane, and Z-coordinate is directed to 
the upper vertical direction. A general purpose finite-element analysis software called ABAQUS is 

M1,T M1,T 

(1) 

(2) (3) 

(4) 



used in the following. The command “RELEASE” is used for releasing the moments at member 
ends. 

The nodes marked with circle in Fig. 1(b) are fixed in Z-direction. Among them, one node is further 
fixed in Y-direction, and another node is further fixed in X- and  Y-directions. Hence, the total 
number of fixed DOFs is 15k = . 
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Fig. 5:  Node numbers (with parentheses) and member numbers (without parentheses) of one of 12 

equal parts of the 3-layer hexagonal latticed shell 

 

The optimization approach presented in Ref. [4] has been used to generate the latticed shell in Fig. 
1(a) that has uniform member lengths. The coordinates for one of 12 equal parts is listed in Table 2. 
The coordinates of other nodes can be found based on the symmetry conditions. Fig. 1(b) shows the 
developed configuration on a plane, where each unit is indicated by a pair of thick lines connected 
at a node. As is seen, the hexagonal grids can be constructed as an assembly of pairs of members. 
The member-end moments are released in various patterns at each node. Note that members are 
rigidly connected at free node 10 along the boundary. 

 
Table 2:  Nodal coordinates (m) 

 
X Y Z 

1 0.000 6.077 10.103 

2 0.000 11.917 8.420 

3 5.062 14.846 6.766 

4 0.000 19.846 4.161 

5 6.042 19.883 3.510 

6 9.825 23.094 0.000 

 

It is seen from Table 1 that the statical indeterminacy of the rigidly jointed latticed shell with 3D =  
is 133, if no moment is released, i.e. 0r = . Because the number of free nodes is 54 12 42− = , 
stability will not be lost when two moments are released appropriately at each free node. 

Stability of a structure can be evaluated from the eigenvalues of the tangent stiffness matrix. 
However, one of the purpose of this study is to present a method of construction analysis using a 
general purpose finite-element analysis program, and such program does not have capability of 
eigenvalue analysis of tangent stiffness matrix. Therefore, we use eigenvalue analysis of vibration, 
which is readily available in any commercial codes, for evaluation of stability.  



Since the latticed shell may have local instability due to rotations of nodes and/or members when 
too many moments are released at member ends, auxiliary rotational masses are given using the 
element called “ROTARY INERTIA” of ABAQUS to detect instability due to release of moments. 
The structure is stable if all eigenvalues of vibration are positive; otherwise, the structure is unstable 
with zero eigenvalues. Among several approaches of eigenvalue analysis in ABAQUS, only 
subspace approach with an appropriately small number and bound of eigenvalues was successfully 
applied to detect all zero eigenvalues of an unstable structure. Static analysis with uniform vertical 
loads is also carried out for a stable structure for verification purpose. 

 

Table 3:  Stability of latticed shells with various release patterns 

Case Release condition Stability 
Statical 

indeterminacy 

Kinematical 

indeterminacy 

1 
Release M1 at two 

ends and center  

 

 Stable 0 21 

2 
Release M1 and T at 

two ends. 

 

 Stable 0 9 

3 
Release M2 and T at 

two ends. 

 

 Stable 0 9 

4 

Release T at two 

ends and M1 at 

center. 

 

 Unstable 1 16 

5 

Release T at two 

ends and M2 at 

center. 

 

 Stable 0 15 

 

 

   
 

   
 

   
 

(a)        (b) 

Fig. 6:  Deformation for Case 2 under uniform vertical loads; (a) undeformed, (b) deformed 

 

Table 3 shows the stability of the latticed shell for various release conditions. We found four release 

conditions that lead to stable structures. As is seen, Cases 1-3 and 5 are stable. Kinematical and 

statical indeterminacies are also computed by investigating the size and rank of the equilibrium 

matrix. As is seen, Case 4 has one unstable mode of deformation. 

M1 M1 

M1 M1 

M1,T M1,T 

M2,T M2,T 

M1 M1 

T T 

T T 

M2 M2 



Among the stable cases, construction process of Case 2 is investigated in the following section. Fig. 

6 shows the undeformed and deformed configuration of Case 2 under uniform vertical nodal loads. 

As is seen, the deformation is slightly asymmetric, and there exists a torsional deformation along 

the center axis. 

4. Lift-up Analysis 

We simulate the lift-up process to demonstrate that various shapes can be generated using the 
hexagonal grids with uniform member lengths. All nodes are first placed on the XY-plane, and 
member-end moments are appropriately released. The final shape is generated after four steps of 
lift-up, where the nodes are consecutively moved upward from the center. 

We first lift-up nodes around the center indicated by circles in Fig. 7(a) to the specified height 
1.68274 m, which is the difference between Z-coordinates of nodes 1 and 2 in Table 2. This process 
can be traced using the generalized inverse of equilibrium matrix [15]. However, we show that this 
can also be done by the forced-displacement analysis of ABAQUS without development of any 
special purpose program.  

It is confirmed that no stress is generated in members during the lift-up process. Some member ends 
are fixed at the end of this 1st lift-up process illustrated in Fig. 7(a). The final configuration after 
the 4th step is shown in Fig 7(b), where the nodes with circles are lifted by specified amount. The 
shape in Fig. 7(b) coincides with the target shape in Fig. 6(a), because the nodes are lifted by the 
same amount at each step. However, we can generate various shapes by non-uniformly lifting the 
nodes at each step. 

 

   

 

 

   
 

 

    
 

Fig 7:  Configuration during lift-up process; (a) after 1st step, (b) after 4th step 

 

In order to verify the stability and constructability of the latticed shell, a prototype-model has been 
made using steel bars and bolts. The unit is as shown in Fig. 8(a), of which the two bars with solid 
circular section are connected at the center as shown in Fig. 8(b). Fig. 8(c) shows the connection 
between two units. Rubber bands are used to enhance stiffness of bars and joints. Fig. 9 shows the 
configuration on a plane. It can be seen from Fig. 10(a) and (b) that various shapes can be easily 
generated using this system. Type 1 is almost axisymmetric, and Type 2 has an asymmetric shape. 

 

○ 

○ 
○ 

○ 

○ 
○ 

○ 

○ 

○ 

○ 

○ 

○ 

○ 

○ 

○ 

○ 

○ 

○ 



             
                  (a)                                      (b)                                       (c) 

Fig. 8:  Connections of members; (a) a unit consisting of two bars, (b) center of unit, 

 (c) connection between units 

 

 
Fig. 9:  Configuration on plane 

 

        
(a)          (b) 

Fig. 10:  Various configurations; (a) Type 1, (b) Type 2 

 

5. Conclusions 

Stability and construction process have been investigated for latticed shells with hexagonal grids, 
which is generated as an assemblage of a unit consisting of a pair of members with the same length. 
It has been shown that various types of connections are possible to construct stable hexagonal-grid 
shell with uniform member lengths.  

The lift-up process has been simulated using a general purpose finite element analysis software 
package called ABAQUS. The stability can be verified using eigenvalue analysis of free vibration, 
and the unstable lift-up process can be simulated using a forced-displacement analysis. 

It has been found that various shapes can be generated using hexagonal grids with the same 
topology and uniform member lengths. Therefore, hexagonal grids can be effectively utilized for 
generating free-form surfaces with latticed shells. 
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