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1. Abstract
Eccentrically braced frames are used for passive control of building frames under seismic excitations.
The link member between the beams and braces is reinforced with stiffeners in order to improve stiffness
and plastic deformation capacity. In this study, we present a method for optimizing the locations and
thicknesses of the stiffeners as well as the length of a link member. The optimal solutions are found using a
heuristic approach called tabu search. The objective function is the dissipated energy before failure of the
link member. The deformation under static cyclic forced displacements is simulated using the commercial
finite-element software package called ABAQUS. It is demonstrated in the numerical examples that the
dissipated energy can be increased through optimization with small number of analyses.
2. Keywords: Eccentrically braced frame, Energy dissipation, Tabu search, Finite-element analysis,
Cyclic deformation

3. Introduction
Owing to recent advancement of computer technologies as well as the algorithms for analysis and optimiza-
tion, we can optimize complex structures using sophisticated finite-element (FE) analysis for evaluation
of elastoplastic responses. For example, the body of automobile can be optimized considering crash
properties utilizing approximation methods such as response surface model [1].

In the conventional formulations of optimization problems in the field of building engineering, the
stiffnesses of beams and columns of frames are optimized to minimize the total structural volume under
constraints on elastic stresses and displacements under static loads [2]. However, one of the criticisms in
optimization in building engineering is that the structures in this field are not mass-products; therefore,
it is not effective to optimize a structure that is built only once.

Recently, some attempts have been made for optimizing the structural parts such as beams, columns,
and joints of building frames. Since the parts are mass-products, it is worthwhile to spend much compu-
tational effort for optimization. The authors optimized the cross-sectional shape of the clamping device
of frame-supported membrane structures [3]. The first author optimized the flange shape of the beam
with reduced section for maximization of plastic energy dissipation under static cyclic loads [4].

In this study, we present a method for optimizing the link member of an eccentrically braced steel
frame, which is used as a passive control device for seismic design of building frame. The member is
located in the middle or at the end of a beam and is supposed to dissipate seismic energy through
plastification under cyclic deformation. The deformation of the link member under static cyclic loads
is simulated using the commercial FE-analysis software package called ABAQUS, where a thick shell
elements with reduced integration is used. The failure of the link member is predicted by the ‘failure
index’ defined by the triaxiality of the stress.

The objective function is the dissipated energy before failure of the link member. The design variables
are locations of stiffeners and the length of the link member, which are discretized to integer values. A
heuristic approach called tabu search (TS) is used for optimization. Optimal solutions are first found for
the link member subjected to forced static cyclic deformations with increasing amplitude at the ends. We
next optimize the link member supported by beams and columns that are modeled by beam elements.
It is demonstrated in the numerical examples that the dissipated energy before failure can be increased
through optimization with small number of analyses, although global optimality of the solution is not
guaranteed.

4. Shape Optimization Problem of Eccentrically Braced Frames
4.1. Failure Index
A braced frame with eccentricity at the joint of beam and brace is called eccentrically braced frame
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Figure 1: A eccentrically braced frame; (a) frame model, (b) link member

(EBF) [5]. An example of EBF is shown in Fig. 1. In this study, we carry out FE-analysis and optimize
the shape of the link member between the two connections of beams and braces. The thicknesses and
locations of the stiffeners attached to the link member are optimized to maximize energy dissipation
under cyclic static forced deformation. The maximum acceptable deformation of member is defined, as
follows, using the failure index.

Let εp denote the equivalent plastic strain defined as

εp =
∫ t

0

√
2
3
ε̇p

ij ε̇
p
ijdt (1)

where ε̇p
ij is the plastic strain rate tensor, ˙( ) is the derivative with respect to pseudo time t, and the

summation convention is used. The critical plastic strain εcritical
p is defined as

εcritical
p = α exp

(
−1.5

σm

σe

)
(2)

where σm is the mean stress and σe is the von Mises equivalent stress. The ratio σm/σe is called stress
triaxiality. The parameter α is dependent on material.

The failure index FI is defined as [8]
FI =

εp

εcritical
p

(3)

The material is assumed to fracture when FI reaches 1.0.

4.2. Optimization Problem
All variables are discretized into integer values and a heuristic approach called tabu search (TS) is used
for optimization. Let J = (J1, . . . , Jm) denote the vector of m design variables that can take integer
values. Real values x1, . . . , xm representing, e.g., the locations of stiffeners, are defined by Ji with the
specified values x0

i and ∆xi as

xi = x0
i + (Ji − 1)∆xi, (i = 1, . . . , m) (4)

Therefore, all properties of the link member are functions of J.
We consider two optimization problems. In the first problem, the final time for the specified cyclic

displacement as shown in Fig. 2 is specified. The plastic dissipated energy Ep(J) throughout the specified
cyclic deformation is maximized, and the upper bound 1.0 is given for the maximum failure index If(J)
throughout the deformation. Then, the optimization problem is formulated as

P1 : Maximize F (J) = Ep(J) (5a)
subject to If(J) ≤ 1.0 (5b)

Ji ∈ {1, . . . , si}, (i = 1, . . . , m) (5c)
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Figure 2: Forced cyclic displacement

where si is the number of pre-assigned values for Ji.
We use a penalty function approach, because TS cannot handle the constraints directly. The objective

function is replaced by F ∗(J), defined as follows, when the constraint is violated:

F ∗(J) = F (J)− p(If(J)− 1.0)2 (6)

where p is the penalty parameter. Note that a negative penalty is given for the maximization problem.
In the second optimization problem, we maximize the plastic energy Ef

p(J) that is dissipated before
FI reaches 1.0. The forced deformation terminates at the time when FI reaches 1.0. The optimization
problem is formulated as follows as a unconstrained problem:

P2 : Maximize F (J) = Ef
p(J) (7a)

subject to Ji ∈ {1, 2, ..., s}, (i = 1, 2, ..., m) (7b)

4.3. Tabu Search (TS)
The tabu search (TS) is classified as s single-point search heuristic approach, and is a slight extension
of the random local search [2]. TS basically moves to the best neighborhood solution even if it does not
improve the solution. A tabu list is used to prevent an unfavorable phenomenon called cycling, in which
small number of solutions are selected alternatively. The basic algorithm of TS is summarized as follows:

step 1 Randomly generate a seed solution Ĵ, and initialize the tabu list T as T = {Ĵ}. Evaluate the
objective function and initialize the incumbent optimal objective value as F opt = F (Ĵ).

step 2 Generate a set of q neighborhood solutions N = {JN
j | j = 1, ..., q} from Ĵ, and evaluate the

objective value of each solution.

step 3 Select the best solution that has the maximum value of F (JN
j ) (or F ∗(JN

j ) if the constraint is
violated) in the set N , which is not included in the list T . Assign the best solution to the new seed
solution Ĵ.

step 4 Update the incumbent optimal objective value as F opt = F (Ĵ), if Ĵ satisfies the constraint and
F (Ĵ) > F opt.

step 5 Add Ĵ to the list T . Remove the oldest solution from T , if the number of solutions in T exceeds
the upper limit.

step 6 Output F opt and the corresponding optimal solution if the number of iterations reaches the
specified limit; otherwise, go to step 2.
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Figure 3: Optimization algorithm using TS and ABAQUS

It is desirable to generate all the neighborhood solutions when selecting the next seed solution. How-
ever, one of the purpose of this study is to show that the complex performance of a structure can be
improved through small number of analyses; therefore, we limit the size of neighborhood solutions to
very small value. Furthermore, the update to a non-improving solution is prohibited, and solutions are
searched locally by carrying out TS from several different initial solutions.

Fig. 3 shows the data flow between TS and FE-analysis using ABAQUS. The pre- and post-process
are carried out using the Python script. The computations of functions and the process of TS are coded
as a Fortran program. In the following, analysis and optimization is carried out using a PC with Intel
core i7 CPU, 2.93GHz, 3GB RAM.

5. Optimization of Link Member
The link member has the wide-flange section W10×33 (H-247×202×7×11). The standard solution of the
link member has four stiffeners of thickness 10.0 mm in one side, and the length e = 1219 mm.

The steel material is ASTM A992, where Young’s modulus is 2.0×105 N/mm2, yield stress is 359.0 N/mm2,
tensile strength is 592.0 N/mm2, and kinematic hardening with the hardening ratio 0.006 is used. The
parameter α for the FI in Eq.(2) is 2.6 [8].

According to American Institute of Steel Construction (AISC) [6], the strength and the failure mode
of a link member depend on the length e and the ratio of shear strength Vp to the fully plastic moment
Mp. The link member to be optimized in this study has the ratio Mp/Vp =639 mm, and is classified as
shear/bending failure mode.

The general purpose FE-analysis software called ABAQUS Ver. 6.9.3 [7] is used for analysis. The
shell elements S3R and S4R with reduced integration is used for modeling the link member. The nominal
size for automatic mesh generation by Python is between 15 mm and 25 mm. All translational and
rotational displacements are fixed at boundary ‘A’ in Fig. 1(b) except the displacement in x-direction
(axial direction). A forced cyclic displacement in y-direction (vertical direction) is given at boundary ‘B’.

The locations and thicknesses of the four stiffeners are optimized. In order to preserve the symmetry
of link member, the independent variables for the locations X1 and X2 (mm) are defined by the two
integer variables J1 and J2 as

Xi = X0
i + (Ji − 6)∆X, Ji ∈ {1, . . . , 11}, (i = 1, 2) (8)

where X0
i is the location of the stiffener of the standard model, and ∆X = 20 (mm). Therefore, the

lower and upper bounds for (Xi −X0
i ) are −100 mm and 100 mm, respectively.

The thicknesses D1 and D2 (mm) of the stiffeners are defined by the variables J3 and J4 as

Di−2 = D0
i−2 + (Ji − 3)∆D, Ji ∈ {1, . . . , 7}, (i = 3, 4) (9)

where D0
i is 10 mm, and ∆D = 3 (mm); hence, the lower and upper bounds of Di are −4 mm and 22

mm, respectively.
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Figure 4: Stress distribution of standard solution
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Figure 5: Stress distribution of optimal solution

Table 1: Optimization results of link member

Model Ep (kN· m) If Rmax (kN) Ef
p (kN· m)

Standard 336.0 1.057 416.4 323.0
Optimal 347.0 0.670 417.9 459.9

We solve P1 with fixed number of cycles of forced displacement, which is defined so that the FI of the
standard model exceeds 1.0 at the end of loading. Thus, the first cycle has 0.04 rad, and the following
2.25 cycles have 0.08 rad.

For the TS, the number of neighborhood solutions is 3, number of steps is 5, the size of tabu list is
5, and the penalty parameter is p = 1.0 × 105, which is large enough so that a solution violating the
constraint is not selected.

Note that the best neighborhood solution that does not improve the objective value is not selected as
the seed solution of the next step. Although the solution obtained by TS is not the global optimum, the
best solution after five trials from different random seed is hereafter called optimal solution. The CPU
time for a single analysis is about 520 sec., although it depends on the degree of plastification.

Figs. 4 and 5 show the standard and optimal solutions, respectively, with the contour lines of von
Mises stress. The responses of the solutions are listed in Table 1, where Rmax is the maximum reaction
force. The optimal locations of four stiffeners are (−40,+80,−80,+40) (mm), and the optimal thicknesses
are (16,7,7,16) (mm). We can see from these results that the two stiffeners became thicker and moved to
the ends, where stresses of the standard solution have large values. Five solutions were rejected by the
tabu list.

It is also seen from Table 1 that the maximum value If of FI is reduced, and the maximum value
Rmax of the reaction force became slightly larger as the result of optimization. The performances of the
standard and optimal solutions are also compared using the dissipated energy Ef

p before FI reaches 1.0.
As is seen, Ef

p of the optimal solution is 42% larger than that of the standard solution; hence, the energy
dissipation property can be drastically improved through optimization.

6. Shape Optimization of Link Member of Eccentrically Braced Portal Frame
6.1. Frame Model
We next optimize the link member attached to a portal frame as shown in Fig. 6 subjected to lateral
cyclic deformation. The length of the link member is included in the design variables to maximize the
energy dissipation. The frame has span L =4.0 m, height h =2.0 m, and is rigidly supported at the
column bases. Lateral cyclic displacement of magnitude ∆ = 0.02h = 60.0 mm is applied at nodes N1
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Table 2: Sectional properties of beams, columns, and braces

Section A (mm2) Zx (mm3) Ix (mm4)
Beam H-247×202 62.6×102 574×103 7075×104

Column ¤-250×250 110×102 820×103 10300×104

Brace — 60.0×102 — —

and N2 as indicated in arrows in Fig. 6.
The link member has the length e (mm) and the same sectional properties as the previous section. The

flange, web, and stiffener of the link member are discretized into shell elements. The beams have the same
section W10×33 as the link member, and columns have the box section ¤-250×250×12. The beams and
columns are modeled by beam elements, and the braces are modeled by truss elements. Young’s modulus
and Poisson’s ratio of beam and truss elements are 2.0 × 105N/mm2 and 0.3, respectively. The sectional
properties of beams, columns, and braces are summarized in Table 2. Rigid plates are attached at the
two ends of the link member.

6.2. Optimization Results
Optimal solution of P2 is found, where the variables are the length e of the link member, and the locations
and thicknesses of the stiffeners. In addition to the four variables in the previous section, the length e =
(mm) is defined by the integer variable J5 as

e = e0 + J5∆e, J5 ∈ {1, . . . , 12} (10)

where e0 = ∆e = 100. Hence, the number of variables for this case is 5. The locations (x-coordinates)
and thicknesses are defined by (8) and (9), respectively, where ∆X = 0.015e and ∆D = 3 (mm). The
CPU time for a single analysis is about 1000 sec., although it depends on the degree of plastification.

The objective function is Ef
p, which is the dissipated energy before If reaches 1.0. The number of

neighborhood solutions is 4, the number of steps is 5, and the length of tabu list is 5. Optimal solutions
are found from six initial solutions with e = 600, 700, 800, 900, 1000, and 1100 (mm). Let Ncycle, γmax,
and V max

L denote the number of cycles before reaching If = 1.0, the maximum rotation angle of link
member, and the maximum shear force of the link member, respectively.

The optimal thicknesses and locations of the stiffeners are (22,7,7,2) (mm) and (−18,+36,−36,+18)
(mm), respectively, which are similar to those of the previous section. There was no solution that was
rejected by the tabu list. Fig. 7 shows the locations of stiffeners and the contour of von Mises stress of the
optimal solution at If = 1.0. The optimization results are summarized in Table 3. The dissipated energy
Ef

p of the optimal solution at If = 1.0 is 593.0 kN·m, which is 26.1% larger han that of the standard
solution.
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Figure 7: Stress distribution of the optimal frame model at If =1.0

Table 3: Optimization results of frame model

Model e (mm) Ef
p (kN·m) Ncycle γmax (rad) V max

L (kN)
Standard 1219 470.2 7 0.051 409.4
Optimal 800 593.0 7 0.083 505.5

7. Conclusions
It has been shown in this study that TS is very effective for structural optimization problem, for which
substantial computational cost is needed for response evaluation and, accordingly, function evaluation
cannot be carried out many times. The performance of the solution can be drastically improved within
small number of steps, although the global optimality is not guaranteed.

Optimal shapes have been found for the link member of a eccentrically braced frame. The failure
of the member is defined using the failure index. It has been shown that non-uniform locations and
thicknesses of the stiffeners can drastically improve the energy dissipation property before fracture under
cyclic static deformation.
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