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Abstract 
A method is presented for configuration optimization of frames that have specified 
properties on nodal displacements, stresses, and reaction forces against static loads. The 
conventional ground structure approach is first used for topology optimization. An 
optimal topology with a small number of members is obtained by assigning artificially 
small upper-bound displacement. The nodal locations and cross-sectional areas are next 
optimized under stress constraints. The proposed method is applied to design of self-
fastening clamping members for membrane structures modeled using frame elements. 
An optimization result is also presented for a clamping member that adjusts deformation 
of membrane by applying a clamping force with a vertically attached bolt. 
 
Keywords:  Membrane structure, Clamping member, Configuration optimization, 
Stress constraints 
  
1 Introduction 

There are many researches on simultaneous optimization of shape and topology, which 
is called configuration optimization, of trusses and frames [1-4]. Optimal topologies of 
trusses under constraints on global properties such as compliance and displacements can 
be easily obtained using the standard ground structure approach, where unnecessary 
members are removed through optimization from a highly-connected ground structure. 
However, there still exist several difficulties in problems under stress constraints [5-7], 
which are categorized as local constraints [8] that lead to existence of many thin 
members or elements; i.e., the number of members cannot be reduced effectively by 
simple application of the ground structure approach. In the most widely used SIMP 
(solid isotropic microstructure with penalty or solid isotropic material with 
penalization) approach [9,10] to topology optimization of continua, an intermediate 
value of material density is penalized by assigning artificially small stiffness. 
Membrane structures are generally connected to the boundary frames with clamping 
members as illustrated in Figure 1. Since such devices are mass-products and have large 
portion of the total weight of the membrane structure, it is possible that the total 
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production cost can be reduced by optimizing shapes and cross-sectional properties of 
the members. Furthermore, when external loads such as wind loads are applied to the 
membrane, its tensile force increases and the membrane sheet may detach from the 
clamping member prior to the fracture of membrane material. Therefore, the load 
resistance capacity of the membrane structure can be improved by optimizing the 
clamping members so that the clamping force increases as a result of the increase of 
tensile force of the membrane.  
In this study, we present a method for design of clamping members of frame supported 
membrane structures. The clamping members are modeled using frame elements. The 
objective function is the total structural volume, which is to be minimized, and the 
constraint is given for the clamping force against the membrane to obtain a self-
fastening member. We also present an optimization result of a clamping member that 
enables us to adjust deformation of membrane by applying a clamping force through a 
vertically attached bolt. 
 

 
Fig. 1:  Illustration of a clamping member of a frame-supported membrane structure 

 
2 Overview of tensioning process and clamping member of a frame-

supported membrane structure 

We first describe overview of tensioning process as illustrated in Figure 2. In this 
process, temporary supports are attached first to the structural boundary members along 
the boundary of the membrane sheet. To obtain reaction force from the boundary frames 
through the temporary support, the membrane is pulled (tensioned) by using a tool until 
the preassigned holes of the membrane are located on the bolt holes of the boundary 
frame. Finally, the membrane is pressed to the frame using the clamping member and 
bolts. However, in this process, there exist the following difficulties: 

1. Adjustment of tensile force of membrane is very difficult because the holes are 
preassigned in the factory. 

2. Temporary supports for obtaining reaction force through tensioning tools are 
needed in addition to the boundary frame. 

In the following, optimization approaches are presented to overcome these difficulties. 
The section of the clamping member is modeled as a frame with small elastic 
deformation. 
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Fig. 2: Construction process of a frame-supported membrane structure 

 
3 Topology optimization of a self-fastening clamping member 

3.1 Problem formulations 
Optimization of topology, cross-sectional areas of members, and nodal locations, which 
is simply called configuration optimization, is carried out for a frame subjected to static 
loads. The standard ground structure approach is used at the first step; i.e., unnecessary 
nodes and members are removed through optimization from the highly connected initial 
ground structure. The design variables are the cross-sectional areas T

1( , , )mA A=A …  of 
members, where m is the number of members in the ground structure. The cross-
sectional properties such as the second moment of inertia and the section modulus are 
assumed to be functions of the cross-sectional area. 
A constraint is given so that the maximum absolute value ( )iσ A  among the stresses at 

the two edges of two ends of the ith member is less than the specified upper bound Uσ . 
A lower bound LR  is also given for the reaction force ( )R A  at the specified direction 
of a support. Then the optimization problem for minimizing the total structural volume 

( )V A  is formulated as 

P1: minimize ( )V A      (1a) 
subject to U( )iσ σ≤A   ( 1, , )i m= …   (1b) 

L( )R R≥A     (1c) 
L U≤ ≤A A A     (1d) 

where L L L T
1( , , )mA A=A …  and U U T

1( , , )mA A=AU …  are the lower and upper bounds for 
A . Note that a small positive value is given for the lower-bound cross-sectional area to 
prevent instability of the frame during optimization process, and the member with 

L
i iA A=  is removed after optimization. 

An optimal topology satisfying constraints on stresses and a reaction force may be 
found by solving Problem P1, which is a standard nonlinear programming (NLP) 
problem. It is well known in truss topology optimization that the number of members 
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cannot be successfully reduced by using a conventional ground structure approach with 
an NLP algorithm if stress constraints are considered [6,7]. Therefore, we first carry out 
optimization, as follows, with a displacement constraint and without stress constraint:  

P2: minimize ( )V A      (2a) 
subject to U( )U U≤A   ( 1, , )i m= …   (2b) 

L( )R R≥A     (2c) 
L U≤ ≤A A A     (2d) 

where UU  is the upper bound for the absolute value of a specified displacement 
component U. Problem P2 is first solved to obtain a topology with a small number of 
members. Then Problem P1 is solved starting with the optimal solution of Problem P2 
to obtain an approximate optimal topology under constraints on stresses and a reaction 
force. 
Finally, the nodal locations as well as the cross-sectional areas are optimized to obtain 
the optimal configuration under constraints on stresses and a reaction force. Optimal 
solution of Problem P2 can be used as the ground structure with reduced number of 
members. Suppose we use Problem P2, and, consequently, A  and m denote the cross-
sectional areas and the number of members of the ground structure with a reduced size. 
Let X denote the vector consisting of the variable components of the nodal coordinates. 
Then the optimization problem is formulated as 

P3: minimize ( , )V A X     (5a) 
subject to U( , )iσ σ≤A X   ( 1, , )i m= …   (5b) 

L( , )R R≥A X     (5c) 
L U≤ ≤A A A     (5d) 
L U≤ ≤X X X     (5e) 

where LX  and UX  are the lower and upper bounds for X, respectively. 
In the following examples, optimization is carried out using the software library SNOPT  
Ver. 7.2 [11] utilizing sequential quadratic programming. The sensitivity coefficients 
are computed by using a finite difference approach. The best solution from ten different 
initial solutions is taken as an approximate optimal solution. 
 

 
Fig. 3: A frame model (Type 1) 
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3.2 Numerical examples 
We first find the overall configuration of the device that automatically clamps the 
membrane as the result of introducing tensile force to the membrane sheet. Consider a 
frame (Type 1) as shown in Figure 3 as the ground structure, where the intersecting 
diagonal members are rigidly connected at the centers. The frame is supported with 
roller at support 1 and fixed at supports 2 and 3. The member is supposed to have solid 
rectangular section with the fixed width 10b =  mm. A load 500P =  N is applied in the 
negative x-direction at support 1. Problem P1 is first solved for finding an optimal 
topology, where R represents the vertical (positive y-directional) reaction force at 
support 1; i.e., the device clamps the membrane if R is positive. 
 

 
Fig. 4: Optimal configuration of Type 1 with stress constraints 

 
The elastic modulus of the members is 52.0 10×  N/mm. The lower bound LR  for 
reaction force is 200 N. The cross-sectional areas of all the 42 members are independent 
variables with lower bound L 0.1iA =  2mm , whereas different values of U

iA  are used for 
the optimization problems below. The upper-bound stress is U 200iσ =  2N/mm . In the 
following, the units of length and force are mm and N if they are not explicitly specified. 
A uniform random number 0 1ir≤ <  is generated to obtain the initial value of iA  as 
50 1.0ir + .  
Problem P1 is solved with the upper-bound cross-sectional area U 200iA = ; i.e., the 
maximum height is 200 /10 20= . The optimization result after removing the members 
with L

i iA A=  is shown in Figure 4, where the height of each member is drawn with real 
scale. Note that the reaction constraint is active as L 200R = , and the objective function 
value is 41.1018 10V = × . If all cross-sectional areas have the same value 100, then 

141.11R = − ; i.e., the device should be pulled downward by the membrane sheet at 
support 1, which is not realistic; therefore, the direction of reaction force has been 
successfully reversed through optimization.  
As is seen from Figure 4, the number of members is not drastically reduced, because 
stress constraints should be satisfied in all members including very thin members. 
Therefore, Problem P2 is next solved to obtain a topology with smaller number of 
members. A large upper bound U 1000iA =  is given to allow the existence of thick 
members. The upper bound U 0.1U =  is given for the absolute value of the horizontal 
displacement of support 1. The optimal topology is shown in Figure. 5(d), where the 
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height of each member is scaled by 1/5. The optimal objective value is 41.6781 10V = × . 
As is seen from Figure. 5(d), there still exist many members that seem to be 
unnecessary. 
 

         
(a)     (b) 

 

         
(c)     (d) 

Fig. 5: Optimal topology of Type 1 for various values of UU ; (a) U 0.01U = , (b) 
U 0.02U = , (c) U 0.04U = , (d) U 0.1U =  

 
Table 1: Total structural volume V and number of members optn  of optimal topology of 

Type 1 for various values of UU  
 

UU  V optn  
0.1 16782 30 
0.09 18513 30 
0.08 23396 27 
0.07 23516 30 
0.06 27289 30 
0.05 32310 28 
0.04 38090 28 
0.03 46826 29 
0.02 50352 12 
0.01 67593 7 

 
Therefore, we assign smaller upper-bound displacement to allow larger structural 
volume and cross-sectional areas. The optimal solution for U 0.01U =  is shown in 
Figure 5(a), where 46.7593 10V = ×  and the height of each member is scaled by 1/5. 
The solutions for U 0.02U =  and 0.04 are also shown in Figures 5(b) and (c), 
respectively. We can confirm from Figures 5(a)-(d) that the number of members 
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decreases and the heights of existing members increase as the displacement constraint 
becomes tight. 
The total structural volume V and number of members optn  of optimal topology for 
various values of UU  are listed in Table 1. We can confirm that an optimal solution 
with smaller number of members and larger V is obtained as UU  is decreased. However, 
the maximum height of the members in Figure 5(a) for U 0.01U =  is 56.439, which is 
unrealistic in comparison to the dimension of the frame. Furthermore, stress constraints 
should be satisfied for practical application. Hence, the displacement bound is 
conceived as an artificial parameter for controlling the number of members in an 
appropriate optimal topology. 
We next solve Problem P3 using the solution in Figure 5(a) as the initial ground 
structure with reduced number of members. The optimal solution in Figure 5(a) is 
discretized to shorter members to obtain a smoothly curved frame. The vertical 
coordinates of nodes except the supports are also considered as design variables. Let 0

iY  
denote the y-coordinate of the ith node of the frame in Figure 5(a). The upper and lower 
bounds for iY  are given as 0 5iY +  and 0 5iY − , respectively. Note that rather strict 
bounds are given to avoid an optimal shape with small height, because the endrope for 
the membrane sheet should be contained in the clamping member. 
 

         
(a)     (b) 

Fig. 6:  Optimal solution of Type 1 under stress constraints with variable nodal 
locations; (a) undeformed shape, (b) deformed shape 

 

 
Fig. 7:  Illustration of a self-fastening clamping member 

 
Figure 6(a) shows the optimal shape with real scale, where 41.7082 10V = × . Figure 
6(b) shows the deformed shape with magnification factor 20. As is seen, only the nodes 
near support 1 moves in the horizontal direction; thus, a vertical compressive force is 
applied from the frame to the support, and, accordingly, the clamping force increases as 
the tensile force of the membrane sheet increases. From this result, we can construct a 
self-fastening clamping member as illustrated in Figure 7. 
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4 Topology optimization of a clamping member with a tension 
adjustment bolt 

4.1 Problem formulations 
In Section 3, we presented a method for generating a clamping member that can 
automatically fasten the membrane sheet as the tensile force is increased. However, for 
application to the practical design of membrane structures, it is more desirable if the 
tensile force can be adjusted through additional forces to the clamping member as 
illustrated in Figure 8. Therefore, we next consider a problem with two loading 
conditions; i.e., the first load 1P  is applied by the vertical bolt to pull the membrane for 
adjustment of the tensile force, and the second load 2P  represents the tensile force of the 
membrane sheet. 
 

 
Fig. 8:  Illustration a clamping member with tension adjustment bolt 

 

 
Fig. 9:  A frame model (Type 2) 

 
Let (1)U  and (2)U  denote the x-directional displacements of node (support) 1 in Figure 9 
under specified static loads 1P  and 2P , respectively. We first minimize the total 
structural volume V without stress constraints to obtain a frame with small number of 
members. The lower bound (1)LU  ( 0)>  is given to ensure capacity of adjustment by the 
bolt, and the lower bound (2)LU  ( 0)<  is given for generating a frame with enough 
stiffness. A lower bound LR  is also given for the vertical (y-directional) reaction force 

(2)
1 ( )R A  at support 1.  

Then the optimization problem is formulated as follows: 
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P4: minimize ( )V A       (6a) 
subject to (1) (1)L

1 ( )U U≥A     (6b) 
(2) (2)L
1 ( )U U≥A     (6c) 
(2) L

1 ( )R R≥A      (6d) 
L U≤ ≤A A A      (6e) 

The optimal solution of Problem P4 is used as the new ground structure with small 
number of members. Since the number of members need not be reduced anymore, the 
displacement (1)

1U  against 1P  can be directly maximized to obtain a good capacity of 
adjustment of membrane forces. Hence, we assign the stress constraints for both the 
states under 1P  only and under simultaneous application of 1P  and 2P , and solve the 
following problem adding the nodal coordinates X as variables. 

P5: minimize ( , )V A X      (7a) 
subject to (1) (1)L

1 ( , )U U≥A X     (7b) 
(1) U( , )iσ σ≤A X   ( 1, , )i m= …   (7c) 
(1) (2) U( , ) ( , )i iσ σ σ+ ≤A X A X   ( 1, , )i m= …  (7d) 
L U≤ ≤A A A      (7e) 
L U≤ ≤X X X      (7f) 

where (1)
iσ  and (2)

iσ  are the stresses of member i against 1P  and 2P , respectively.  
 

 
Fig. 10: Optimal solution of Type 2 under displacement constraint 

 
 

     
(a)                                       (b)                                         (c) 

Fig. 11: Optimal solution of Type 2 under stress constraints; (a) undeformed shape, (b) 
deformed shape magnified by 10 after application of 1P ; dotted line: undeformed shape, 

(c) deformed shape magnified by 10 after application of 1P  and 2P  
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Fig. 12: Relation between upper-bound stress and displacement 

 

4.2 Numerical examples 
Consider a frame as shown in Figure 9. The load 1 300P =  is first applied in the vertical 
direction at node 2. Then the y-directional displacement is fixed at node 2, and the load 

2 300P =  is applied in negative x-direction at support 1. Initial solutions are generated in 
the same manner as the examples in Sec. 3. 
The solution of Problem P4 scaled by 1/5 for (1)L 0.1U = , (2)L 0.01U = − , L 200R = , and 

U 200iA =  for all members is shown in Figure 10, which has sufficiently small number 
of members. Problem P5 is next solved after subdivision of members, where the y-
coordinates of nodes except the supports are also chosen as design variables, and their 
initial values and bounds are given in the same manner as the examples in Sec. 3. 
The optimal solution is shown in Figure 11(a) with the real scale for the heights of 
members. The deformed shape against 1P  is shown in Figure 11(b). We can see from 
Figure 11(b) that the distance between the two supports decreases as the center node is 
displaced downward. Figure 11(c) shows the state after application of both 1P  and 2P  
for the frame with fixed vertical displacement at node 2. As is seen, the roller support 
moves to the left, and, consequently, the diagonal member presses the support to 
increase the vertical reaction force. 
Figure 12 shows the relation between the upper-bound stress Uσ  and the displacement 

(1)LU  which is to be maximized. It can be confirmed from Figure 13 that we can have 
larger deformation if the stress constraints are relaxed. 
 
5 Conclusions 
A two-stage approach has been presented for configuration optimization of frames 
under stress constraints against static loads. It has been shown that an approximate 
optimal topology that has many members is obtained if stress constraints are assigned to 
all members. This result is similar to the truss topology optimization under stress 
constraints. Therefore, an approximate optimal topology with small number of members 
is obtained by relaxing the stress constraints and assigning an artificial displacement 
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constraint. The optimal topology can be further optimized under stress constraints after 
sub-division of members, where the vertical coordinates of nodes are also considered as 
design variables. 
It has been confirmed in the numerical examples that an optimal topology with a small 
number of members is obtained by assigning artificially small displacement constraint. 
This way, the well-known difficulty in topology optimization under stress constraints is 
successfully avoided. 
Configuration optimization has been carried out to obtain self-fastening clamping 
members of membrane structures. The total structural volume is minimized under 
constraint on the reaction so that the clamping force increases as the result of increasing 
membrane tensile force. A shape of the device that pulls the membrane efficiently by 
applying vertical force through a bolt can also be found by optimization. This way, the 
total weight of a frame-supported membrane structure can be reduced, and the clamping 
force and the tension force can be maintained through optimization. 
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