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Abstract

Uniqueness and symmetry are investigated for optimal solution of an axisymmetric shell subjected to axisymmetrically

distributed loads. The compliance is minimized under constraint on the structural volume. The thickness of each element
is considered as continuous design variables, and tffaests of an element with intermediate thickness is penalized

to prevent convergence to a gray solution. In contrast to the case of density variables, any solution with intermediate
thicknesses is physically realizable as a solid shell structure. A solution path is defined with respect to the penalization
parameter and traced using the continuation method. The rate form of the solution path is formulated from the optimality

conditions, and the local non-uniqueness and symmetry breaking process of the optimal solution are rigorously investi-
gated through the bifurcation of the solution path, where at a bifurcation point the Jacobian of the governing equations
becomes singular. In the numerical examples, the symmetry-reduction process of the optimal solution as a function of the
penalization parameter is studied in details. It is shown that a ribbed shell is generated through a bifurcation process of
the solution path.

Keywords: Topology optimization, Uniqueness, Axisymmetric symmetry, Shell, Continuation method

1. Introduction

In most of the methods of topology optimization of continua, the 0-1 variables indicating exjsimedastence of
elements are relaxed to continuous variables between 0 and 1. However, simple solution of the relaxed problem leads to a
so called gray solution, in which the variables have intermediate values between 0 and 1. In order to prevent gray solutions,
two approaches called homogenization approach and density approach with penalization [1] have been developed. In
the latter approach, the intermediate density is penalized to have srfakssi using, e.g., the SIMRBdJid isotropic
microstructure with penaltgr solid isotropic material with penalizatiQrapproach [2, 3]. In the SIMP approach, a large
penalization parameter results in a 0—1 solution; however, the convergence property is deteriorated if the penalization
parameter is too large, because the convexity of the objective and constraint functions is lost. Therefore, the optimal
solutions are traced gradually increasing the penalization parameter utilizing the saoaliediation method

In the predictor-corrector continuation method using the Euler predictor, the governing equatiorfteaeatdited,
and the solution path is traced derivatives of the variables along the path [4]. The process of continuation is basically
the same as the parametric programming approach [5, 6] or homotopy method [7] for tracing the optimal solutions corre-
sponding to the various parameter values [8]. However, in most of the continuation methods for the plate (sheet) topology
optimization problems, the governing equations are nfiedintiated, and the solutions are found consecutively with
increasing value of the penalization parameter. Stolpe and Svanberg [9] investigated the trajectory of the optimal so-
lutions with respect to the penalization parameter for a problem for minimizing the worst value of compliances under
multiple loading conditions. Watada and Ohsaki [10] investigated local uniqueness of a path of optimal solution using a
continuation method.

There have been several papers on topology optimization of symmetric plates and shells [11]. eMals§R?]
investigated symmetric optimal topologies of circular plates assigning the symmetry conditions. However, to the authors’
knowledge, there has been no investigation on the mechanism of symmetry-braking process of the optimal topology of
axisymmetric shells. If the penalization parameter is small and intermediate density is allowed, the optimal solution of an
axisymmetric shell subjected to symmetric loads is highly likely to be axisymmetric. In the same manner as bifurcation
theory [13], the uniqueness of the solution is strongly related to the symmetry of the solution. Jog and Haber [14] derived
the conditions of stability using incremental form of the variational problem. Petersson [15] investigated convergence
of the solution with respect to the mesh size for simple loading conditions. Anothmully in application of the
SIMP approach to shells that have in-plane (membrane) and out-of-plane (bending) deformation is that a structure with
intermediate density is not physically realizable.



In this study, we use thickness of each element as a design variable so that a solution with intermediate thickness
can be physically manufactured or constructed as a shell with variable thickness. A small lower-bound for thickness
leads to an optimal topology, whereas a moderately large lower bound leads to an optimal ribbed shell. We first define
local nonuniqueness of the solution as a bifurcation of the solution path with respect to the penalization parameter. The
formulation for numerical continuation with respect to the penalization parameter is rigorously derivetebgndiating
the Karush-Kuhn-Tucker (KKT) conditions and thefstess (equilibrium) equations. Then, condition for local uniqueness
of the solution is derived as the singularity of the Jacobian of the governing equations [13,16,17]. In the numerical
examples, the symmetry-reduction process of the optimal solution as a function of the penalization parameter is studied
in details. It is shown that a ribbed shell is generated through a bifurcation process of the solution path.

2. Optimization problem and optimality conditions
Consider a shell discretized into finite elements. The number of elements and the number of degrees of freedom are
denoted bym andn, respectively. Letl denote the variable that defines the thickness oftthelement, for which the
upper and lower bounds are assigned as
0<d <1 (i=1...,m (1)

The design variable vector is givends- (dy,...,dmn)".
Let hiU andh}- denote the upper and lower bounds for the thickmgsk) of theith element, which is defined as

hi(d) = i +di(h’ - h) (2)
For the thicknesk; (di) for computing the sffness, its intermediate value is penalized using a pararpéten) as
hi(d) = h +dP(hY - h) (3)

Let F(d) € R" denote the nodal load vector including the self-weight that is a functiah dfhe stiftness matrix
is denoted byK(d) € R™". Then the nodal displacement vectd(d) € R" is obtained from the following dfness
(equilibrium) equation:

K(d)U(d) = F(d) 4)
The objective function to be minimized is the compliavgéd) defined as
W(d) = FTU(d) ®)

The stitness matriX(d) is defined as follows with the matrig; (ﬂ) € R™" of theith element, which is also conceived
as a function ofl; and written a;(d;) € R™":
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The volume of theéth element is expressed as a product of the Areand thicknessy;. Then the problem of minimizing
the compliance under constraint on total structural volume is formulated with respect to the variablelesctor

minimize W(d) = FTU(d) (7a)

subject toH(d) = Z Ah -V <0 (7b)
i=1

O<d <1, (i=1,...,m) (7¢)

whereV is the specified upper bound of the total structural volume.
The Lagrangian of problem (7) is formulated as

L(d, 4, u, u") = W(d) + AH(d) + Zm:ﬂiu(di -1+ Zm:,uiL(—di) (8)

i1 i=1
whered, p¥ = (¥, ...,up), andpt = (uf,...,uf) are the Lagrange multipliers that have nonnegative values at the
optimal solution. By diferentiating Eq. (8) with respect th and using Egs. (4)—(6), we have
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where the standard approach of sensitivity analysis of compliance has been used [18]G¥djias

oF oK; oH
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Gi(d) = 2U ol U 7 U+24 gl (10)

Then the optimality conditions (KKT conditions) are derived as
=0 for O<d <1
Gi(d)qy <0 for di=1 (12)
>0 for di=0
The indices of elements satisfying<0d; < 1, and, hence&Gi(d) = 0, is denoted by’; i.e.,
I={i|0<d <1} (12)
and the number of such elements is denoted.by

3. Sensitivity of optimal solution with respect to penalization parameter
Equations for computing the sensitivity dheients of the optimal solutions with respectowhich are called parametric
sensitivity codficients for brevity, are derived below, where {’ indicates dfferentiation with respect tp. For this
purpose, the vector of state variablésind the Lagrange multipliet are also regarded as functionsppf

By differentiating Eq. (4) with respect {m we have

—KU’—(G—,EH’)U+F':O (13)
]
whereh/’ is obtained from Eq.(3)as
h' = (pd'd’ + dP Indi)(h’ - h) (14)
By differentiating the volume constraint (7b), using Eq. (2), and multiplyif®y Wve obtain
1 m
> Z A —hh)d’ =0 (15)
i=1

Suppose the active side constraints remain active at the optimal solution corresponding to the parameter value in the
neighborhood of the current value; i.p#’, >0 andyi'- > 0 are satisfied fod; = 1 andd;, = 0, respectively. Furthermore,
transition of an inactive side constraint to being active is not considered. Hence, for the elemé&ntifferentiation of
Gi(d) = 0 with respect t leads to
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Fori ¢ 7, we haved;’ = 0. Therefore, there ame+ s+ 1 linear equations (13), (15), and (16) fo# s+ 1 variabledJ’,
d’ (i € 7),andA’.

The element indices are rearranged so fhat {1,..., s}, and definedy = (d1,...,ds)". Then the linear equations
for computing the parametric sensitivity dheients of the optimal solution are written in the following form using the

notations defined below: "
-K B 0 U’ bt
BlZT BZZ 823 dOI — b2 (17)
OT BZ3T 0 A 0
with vectorsb; € R", b, € RS, and matrice®!? € R™S, B?? € RS, andB?® € RS. Eq. (17) is simply written as
BX’ =D (18)

The path of the optimal solutions can be traced successively solving Eq. (18) [19].BBissymmetric, the stability of
solution is detected from the eigenvalues or the condition number of ttigcdeet matrix in Eq. (17).
We can solve the first equation of Eq. (17) fdras

U = -K bt + K1B%?dy’ (19)



Figure 1: A spherical shell model.

which is incorporated into the second and third equations of (17) to obtain

BZZ* BZ3 dE) bZ*
(e %)#)-(5) @)
bZ* — b2 + BlZT K—lbl

BZZ* — BZZ + BlZT K—lBlZ (21)

Suppose there exists a singular point where the lowest eigenvaBfé ofanishes. The rate form (20) is converted to
an incremental form as follows for the incremedith andéA of dg and A, respectively, corresponding to the increment

ép of the parameter:
BZZ* BZ3 6d0 bz*
(g B )51 -o0(%) @)

Although the details are omitted, it is easily seen from Eq. (22) that bifurcation of solution occursBffidrecomes
singular.

4. Numerical examples
As a numerical example, unigueness and symmetry of optimal solution is investigated for an axisymmetric shell. The
symmetry of the solution is indicated using the 8efies notation of group theory. If the solution is invariant with
respect tan different rotation operations, then it has the cyclic symmetrylGhe solution is invariant with respect to
different reflection operations in additionni@ifferent rotation operations, then it has the dihedral symmefry C

Consider a spherical shell as shown in Fig. 1 subjected to the vertical concentratdtldbaadch node on the top
ring. The design domain is discretized to 2.0 = 200 elements. The geometrical parametersRire 40.0 m,
H = 115 m, 0 = n/3, anda = 7/12. Young’s modulus is.35 x 10" kN/m?, Poisson’s ratio is 0.2, and the weight
density is 770 kN/m>. The upper and lower bounds for the thicknesstite= 0.5 m andht = 0.1 m, respectively.
The upper-bound volum¥ is equal to the value correspondingdio= 0.25 for all elements. Optimization is carried out
using SNOPT Ver. 7 [20], where the sequential quadratic programming (SQP) is used. The default values are used for
the parameters except the strict tolerancedfor feasibility and optimality of the solution. In the following, the units of
length and force are m and kN, respectively, which are omitted for brevity.

Optimal solutions are found for the parameters between0.20 and 25 with the incrementp = 0.01, by tracing
the solution path assigning the solutionpf Ap as the initial solution for the SQP algorithm. Optimal valuesidér
different parameter values are shown in Fig. 2. The distributions of design variable and thickmessX60 are shown
in Fig. 3, whereh; is normalized b)hiU. The eigenvalues @ are plotted in Fig. 4 with respect o It is seen from Figs. 2
and 3 that ribs are clearly distributed by increasing the parameter.

The solutions withC,o,-symmetry are found for and all eigenvaluesBfare positive for 0 < p < 0.63. The
lowest eigenvalues d8 becomes zero in the interval@2 < p < 0.63, i.e., a bifurcation point has been reached. The
solution atp = 0.63 hasCjq-symetry as shown in Fig. 2. Note that the incrementddfom p = 0.62 to 0.63 is
proportional to the eigenmode as shown in Fig. 5 corresponding to the zero eigenvalue. The lowest eigenvalue vanishes
also at 112 < p < 1.13, where the eigenmode is as shown in Fig. 5. This way, the symmetry of solution is reduced by
half through bifurcation of solution path at each bifurcation point.
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Figure 2: Optimal distributions af for various values op.

6. Conclusions
A simple formulation has been presented for investigating the path of the optimal solution of an axisymmetric shell that
minimizes the compliance under specified load and the total structural volume. A condition for nonuniqueness of the
solution is derived based on a bifurcation of the solution path with respect to the penalization parameter of the SIMP
approach. The formulation for a numerical continuation with the Euler predictor with respect to the penalization param-
eter is rigorously derived by fierentiating the KKT conditions and the fitiess (equilibrium) equations, and volume
constraint.

The thickness of each element, instead of its density, is taken as the design variable. Therefore, a solution with
intermediate thickness can be physically constructed as a shell with variable thickness. The numerical example shows

Figure 3: Distributions ofl andh at p = 2.50.
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Figure 4: Eigenvalues of matrig.

Figure 5: Critical eigenvector at the bifurcation point.

that the solution path of an axisymmetric shell has a bifurcation point where the Jacobian of the governing equations is
singular. The optimal solution is not unique at the bifurcation point, and a symmetry-breaking bifurcation path exists in
the direction of the eigenvector corresponding to the zero eigenvalue analyses of the Jacobian. This way, the symmetry-
reduction process of the optimal solution is characterized as a bifurcation process of the solution path with respect to the
penalization parameter. It has also been shown that a ribbed shell can be successfully generated by assigning moderately
large lower-bound for thickness.
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