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Abstract
Uniqueness and symmetry are investigated for optimal solution of an axisymmetric shell subjected to axisymmetrically
distributed loads. The compliance is minimized under constraint on the structural volume. The thickness of each element
is considered as continuous design variables, and the stiffness of an element with intermediate thickness is penalized
to prevent convergence to a gray solution. In contrast to the case of density variables, any solution with intermediate
thicknesses is physically realizable as a solid shell structure. A solution path is defined with respect to the penalization
parameter and traced using the continuation method. The rate form of the solution path is formulated from the optimality
conditions, and the local non-uniqueness and symmetry breaking process of the optimal solution are rigorously investi-
gated through the bifurcation of the solution path, where at a bifurcation point the Jacobian of the governing equations
becomes singular. In the numerical examples, the symmetry-reduction process of the optimal solution as a function of the
penalization parameter is studied in details. It is shown that a ribbed shell is generated through a bifurcation process of
the solution path.
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1. Introduction
In most of the methods of topology optimization of continua, the 0–1 variables indicating existence/nonexistence of
elements are relaxed to continuous variables between 0 and 1. However, simple solution of the relaxed problem leads to a
so called gray solution, in which the variables have intermediate values between 0 and 1. In order to prevent gray solutions,
two approaches called homogenization approach and density approach with penalization [1] have been developed. In
the latter approach, the intermediate density is penalized to have small stiffness using, e.g., the SIMP (solid isotropic
microstructure with penaltyor solid isotropic material with penalization) approach [2, 3]. In the SIMP approach, a large
penalization parameter results in a 0–1 solution; however, the convergence property is deteriorated if the penalization
parameter is too large, because the convexity of the objective and constraint functions is lost. Therefore, the optimal
solutions are traced gradually increasing the penalization parameter utilizing the so calledcontinuation method.

In the predictor-corrector continuation method using the Euler predictor, the governing equations are differentiated,
and the solution path is traced derivatives of the variables along the path [4]. The process of continuation is basically
the same as the parametric programming approach [5, 6] or homotopy method [7] for tracing the optimal solutions corre-
sponding to the various parameter values [8]. However, in most of the continuation methods for the plate (sheet) topology
optimization problems, the governing equations are not differentiated, and the solutions are found consecutively with
increasing value of the penalization parameter. Stolpe and Svanberg [9] investigated the trajectory of the optimal so-
lutions with respect to the penalization parameter for a problem for minimizing the worst value of compliances under
multiple loading conditions. Watada and Ohsaki [10] investigated local uniqueness of a path of optimal solution using a
continuation method.

There have been several papers on topology optimization of symmetric plates and shells [11]. Moseset al. [12]
investigated symmetric optimal topologies of circular plates assigning the symmetry conditions. However, to the authors’
knowledge, there has been no investigation on the mechanism of symmetry-braking process of the optimal topology of
axisymmetric shells. If the penalization parameter is small and intermediate density is allowed, the optimal solution of an
axisymmetric shell subjected to symmetric loads is highly likely to be axisymmetric. In the same manner as bifurcation
theory [13], the uniqueness of the solution is strongly related to the symmetry of the solution. Jog and Haber [14] derived
the conditions of stability using incremental form of the variational problem. Petersson [15] investigated convergence
of the solution with respect to the mesh size for simple loading conditions. Another difficulty in application of the
SIMP approach to shells that have in-plane (membrane) and out-of-plane (bending) deformation is that a structure with
intermediate density is not physically realizable.
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In this study, we use thickness of each element as a design variable so that a solution with intermediate thickness
can be physically manufactured or constructed as a shell with variable thickness. A small lower-bound for thickness
leads to an optimal topology, whereas a moderately large lower bound leads to an optimal ribbed shell. We first define
local nonuniqueness of the solution as a bifurcation of the solution path with respect to the penalization parameter. The
formulation for numerical continuation with respect to the penalization parameter is rigorously derived by differentiating
the Karush-Kuhn-Tucker (KKT) conditions and the stiffness (equilibrium) equations. Then, condition for local uniqueness
of the solution is derived as the singularity of the Jacobian of the governing equations [13, 16, 17]. In the numerical
examples, the symmetry-reduction process of the optimal solution as a function of the penalization parameter is studied
in details. It is shown that a ribbed shell is generated through a bifurcation process of the solution path.

2. Optimization problem and optimality conditions
Consider a shell discretized into finite elements. The number of elements and the number of degrees of freedom are
denoted bym andn, respectively. Letdi denote the variable that defines the thickness of theith element, for which the
upper and lower bounds are assigned as

0 ≤ di ≤ 1, (i = 1, . . . ,m) (1)

The design variable vector is given asd = (d1, . . . , dm)>.
Let hU

i andhL
i denote the upper and lower bounds for the thicknesshi(di) of the ith element, which is defined as

hi(di) = hL
i + di(h

U
i − hL

i ) (2)

For the thicknesŝhi(di) for computing the stiffness, its intermediate value is penalized using a parameterp (> 0) as

ĥi(di) = hL
i + dp

i (hU
i − hL

i ) (3)

Let F(d) ∈ Rn denote the nodal load vector including the self-weight that is a function ofd. The stiffness matrix
is denoted byK(d) ∈ Rn×n. Then the nodal displacement vectorU(d) ∈ Rn is obtained from the following stiffness
(equilibrium) equation:

K(d)U(d) = F(d) (4)

The objective function to be minimized is the complianceW(d) defined as

W(d) = F>U(d) (5)

The stiffness matrixK(d) is defined as follows with the matrix̂Ki (̂hi) ∈ Rn×n of theith element, which is also conceived
as a function ofdi and written asKi(di) ∈ Rn×n:

K =

m∑

i=1

K̂i (̂hi)

=

m∑

i=1

Ki(di)

(6)

The volume of theith element is expressed as a product of the areaAi and thicknesshi . Then the problem of minimizing
the compliance under constraint on total structural volume is formulated with respect to the variable vectord as

minimize W(d) = F>U(d) (7a)

subject toH(d) =

m∑

i=1

Aihi − V ≤ 0 (7b)

0 ≤ di ≤ 1, (i = 1, . . . ,m) (7c)

whereV is the specified upper bound of the total structural volume.
The Lagrangian of problem (7) is formulated as

L(d, λ,µU,µL) = W(d) + λH(d) +

m∑

i=1

µU
i (di − 1) +

m∑

i=1

µL
i (−di) (8)

whereλ, µU = (µU
1 , . . . , µ

U
m), andµL = (µL

1 , . . . , µ
L
m) are the Lagrange multipliers that have nonnegative values at the

optimal solution. By differentiating Eq. (8) with respect todi and using Eqs. (4)–(6), we have

∂L
∂di

= 2U>
∂F
∂di
− U>

∂Ki

∂di
U + λ

∂H
∂di

+ µU
i − µL

i (9)
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where the standard approach of sensitivity analysis of compliance has been used [18]. DefineGi(d) as

Gi(d) = 2U>
∂F
∂di
− U>

∂Ki

∂di
U + λ

∂H
∂di

(10)

Then the optimality conditions (KKT conditions) are derived as

Gi(d)


= 0 for 0< di < 1
≤ 0 for di = 1
≥ 0 for di = 0

(11)

The indices of elements satisfying 0< di < 1, and, hence,Gi(d) = 0, is denoted byI; i.e.,

I = {i |0 < di < 1} (12)

and the number of such elements is denoted bys.

3. Sensitivity of optimal solution with respect to penalization parameter
Equations for computing the sensitivity coefficients of the optimal solutions with respect top, which are called parametric
sensitivity coefficients for brevity, are derived below, where (· )′ indicates differentiation with respect top. For this
purpose, the vector of state variablesU and the Lagrange multiplierλ are also regarded as functions ofp.

By differentiating Eq. (4) with respect top, we have

−KU ′ −
∂K̂i

∂̂hi

ĥi
′
 U + F ′ = 0 (13)

wherêhi
′ is obtained from Eq. (3) as

ĥi
′ = (pdp−1

i di
′ + dp

i ln di)(h
U
i − hL

i ) (14)

By differentiating the volume constraint (7b), using Eq. (2), and multiplying 1/2, we obtain

1
2

m∑

i=1

Ai(h
U
i − hL

i )di
′ = 0 (15)

Suppose the active side constraints remain active at the optimal solution corresponding to the parameter value in the
neighborhood of the current value; i.e.,µU

i > 0 andµL
i > 0 are satisfied fordi = 1 anddi = 0, respectively. Furthermore,

transition of an inactive side constraint to being active is not considered. Hence, for the elementsi ∈ I, differentiation of
Gi(d) = 0 with respect top leads to

Gi
′ = 2U ′>

∂F
∂di

+ 2U>
(
∂F
∂di

)′
− 2U ′>

∂Ki

∂di
U − U>

(
∂Ki

∂di

)′
U + λ′

∂H(d)
∂di

+ λ

(
∂H(d)
∂di

)′
, (i ∈ I) (16)

For i < I, we havedi
′ = 0. Therefore, there aren + s+ 1 linear equations (13), (15), and (16) forn + s+ 1 variablesU ′,

di
′ (i ∈ I), andλ′.

The element indices are rearranged so thatI = {1, . . . , s}, and defined0 = (d1, . . . , ds)>. Then the linear equations
for computing the parametric sensitivity coefficients of the optimal solution are written in the following form using the
notations defined below: 

−K B12 0

B12> B22 B23

0> B23> 0




U ′

d0
′

λ′

 =


b1

b2

0

 (17)

with vectorsb1 ∈ Rn, b2 ∈ Rs, and matricesB12 ∈ Rn×s, B22 ∈ Rs×s, andB23 ∈ Rs. Eq. (17) is simply written as

BX ′ = b (18)

The path of the optimal solutions can be traced successively solving Eq. (18) [19]. SinceB is symmetric, the stability of
solution is detected from the eigenvalues or the condition number of the coefficient matrix in Eq. (17).

We can solve the first equation of Eq. (17) forU′ as

U′ = −K−1b1 + K−1B12d0
′ (19)
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Figure 1: A spherical shell model.

which is incorporated into the second and third equations of (17) to obtain
(
B22∗ B23

B23> 0

) (
d′0
λ′

)
=

(
b2∗

0

)
(20)

b2∗ = b2 + B12>K−1b1,

B22∗ = B22 + B12>K−1B12
(21)

Suppose there exists a singular point where the lowest eigenvalue ofB22∗ vanishes. The rate form (20) is converted to
an incremental form as follows for the incrementsδd0 andδλ of d0 andλ, respectively, corresponding to the increment
δp of the parameter: (

B22∗ B23

B23> 0

) (
δd0

δλ

)
= δp

(
b2∗

0

)
(22)

Although the details are omitted, it is easily seen from Eq. (22) that bifurcation of solution occurs whenB22∗ becomes
singular.

4. Numerical examples
As a numerical example, uniqueness and symmetry of optimal solution is investigated for an axisymmetric shell. The
symmetry of the solution is indicated using the Schönflies notation of group theory. If the solution is invariant with
respect ton different rotation operations, then it has the cyclic symmetry Cn. If the solution is invariant with respect ton
different reflection operations in addition ton different rotation operations, then it has the dihedral symmetry Cnv.

Consider a spherical shell as shown in Fig. 1 subjected to the vertical concentrated loadP at each node on the top
ring. The design domain is discretized to 20× 10 = 200 elements. The geometrical parameters areR = 40.0 m,
H = 11.5 m, θ = π/3, andα = π/12. Young’s modulus is 2.35× 107 kN/m2, Poisson’s ratio is 0.2, and the weight
density is 77.0 kN/m3. The upper and lower bounds for the thickness arehU = 0.5 m andhL = 0.1 m, respectively.
The upper-bound volumeV is equal to the value corresponding todi = 0.25 for all elements. Optimization is carried out
using SNOPT Ver. 7 [20], where the sequential quadratic programming (SQP) is used. The default values are used for
the parameters except the strict tolerance 10−12 for feasibility and optimality of the solution. In the following, the units of
length and force are m and kN, respectively, which are omitted for brevity.

Optimal solutions are found for the parameters betweenp = 0.20 and 2.5 with the increment∆p = 0.01, by tracing
the solution path assigning the solution ofp − ∆p as the initial solution for the SQP algorithm. Optimal values ofd for
different parameter values are shown in Fig. 2. The distributions of design variable and thickness forp = 2.50 are shown
in Fig. 3, wherehi is normalized byhU

i . The eigenvalues ofB are plotted in Fig. 4 with respect top. It is seen from Figs. 2
and 3 that ribs are clearly distributed by increasing the parameter.

The solutions withC20v-symmetry are found for and all eigenvalues ofB are positive for 0.20 < p < 0.63. The
lowest eigenvalues ofB becomes zero in the interval 0.62 < p < 0.63, i.e., a bifurcation point has been reached. The
solution atp = 0.63 hasC10v-symetry as shown in Fig. 2. Note that the increment ofd from p = 0.62 to 0.63 is
proportional to the eigenmode as shown in Fig. 5 corresponding to the zero eigenvalue. The lowest eigenvalue vanishes
also at 1.12 < p < 1.13, where the eigenmode is as shown in Fig. 5. This way, the symmetry of solution is reduced by
half through bifurcation of solution path at each bifurcation point.
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p = 0.20 p = 0.63 p = 0.64

p = 1.12 p = 1.13

Figure 2: Optimal distributions ofd for various values ofp.

6. Conclusions
A simple formulation has been presented for investigating the path of the optimal solution of an axisymmetric shell that
minimizes the compliance under specified load and the total structural volume. A condition for nonuniqueness of the
solution is derived based on a bifurcation of the solution path with respect to the penalization parameter of the SIMP
approach. The formulation for a numerical continuation with the Euler predictor with respect to the penalization param-
eter is rigorously derived by differentiating the KKT conditions and the stiffness (equilibrium) equations, and volume
constraint.

The thickness of each element, instead of its density, is taken as the design variable. Therefore, a solution with
intermediate thickness can be physically constructed as a shell with variable thickness. The numerical example shows

d h

Figure 3: Distributions ofd andh at p = 2.50.
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Figure 4: Eigenvalues of matrixB.

p = 0.63 p = 1.12

Figure 5: Critical eigenvector at the bifurcation point.

that the solution path of an axisymmetric shell has a bifurcation point where the Jacobian of the governing equations is
singular. The optimal solution is not unique at the bifurcation point, and a symmetry-breaking bifurcation path exists in
the direction of the eigenvector corresponding to the zero eigenvalue analyses of the Jacobian. This way, the symmetry-
reduction process of the optimal solution is characterized as a bifurcation process of the solution path with respect to the
penalization parameter. It has also been shown that a ribbed shell can be successfully generated by assigning moderately
large lower-bound for thickness.
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