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Abstract
A method is presented for shape optimization of anchoring devices for membrane structures. The device is modeled
using frame elements, and an extended ground structure approach is used for optimizing the configuration of the frame
model; i.e., the cross-sectional areas, topology, and geometry (nodal locations) are simultaneously optimized. The ob-
jective function is the total structural volume, and an lower-bound constraint is given for the reaction force related to the
clamping force against the membrane under the external load representing the membrane tensile force. We also present
an optimization result of a frame model that enables us to adjust deformation of membrane by applying a clamping force
with a bolt against the anchoring device. Finally, we present another model of the anchoring device that can be stabilized
by buckling and contact by considering material and geometrical nonlinearity.
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1. Introduction
Recent rapid development of computational technology enabled us to optimize shapes and topologies of large-scale struc-
tures considering realistic and complex responses such as inelastic and dynamic responses. There have been many prac-
tical applications for optimization of mechanical parts. The second author presented a method of optimizing shapes of
beam flanges for maximizing the plastic energy dissipation under cyclic deformation [1, 2]. Therefore, it is possible to
optimize performances of mass-produced structural parts also in the field of civil and architectural engineering.

Membrane structures are widely used for covering large space with lightweight membrane material. Fig. 1 illustrates
an anchoring device of a membrane structure. Membrane structures are generally connected to the boundary frames with
anchoring devices, which are made of aluminum alloy by extrusion molding. Since such devices are mass-products and
have large portion of the total weight of the membrane structure, it is possible that the total production cost can be reduced
by optimizing shapes and cross-sectional properties of the devices. Furthermore, when external loads such as wind loads
are applied to the membrane, its tensile forces increases and anchoring devices are subjected to large deformation, which
may cause detachment of the membrane from the device before the fracture of membrane material. Therefore, the load
resistance capacity of the membrane structure can be improved by optimizing the anchoring devices so that the clamping
force is increased as a result of the increase of tensile force of the membrane.

In this study, we present a method for optimizing anchoring devices modeled by frame elements. An extended ground
structure approach is used for optimizing the configuration of the frame model; i.e., the cross-sectional areas, topology,
and geometry (nodal locations) are simultaneously optimized. First, the topology of the frame model is optimized for
fixed nodal locations. The objective function is the total structural volume, which is to be minimized, and the constraint is
given for the clamping force against the membrane. The external load representing the membrane tensile force is applied,
and the assumption of small deformation is used. We also present an optimization result of a frame model that enables
us to adjust deformation of membrane by applying a clamping force with a bolt against the anchoring device. Finally,
we present another model of the anchoring device that can be stabilized by buckling and contact by considering material
and geometrical nonlinearity, which is an extension of the compliant mechanism presented by the second author [3].
For this purpose, the general purpose finite element solver called ABAQUS is successfully combined with a nonlinear
programming library using a script language called Python. This way, the deformed shape can be retained without bolts
reinforcing and sufficient tensile force is ensured for the membrane.
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Figure 1. Overview of an anchoring device.
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Figure 2. Constraction process.

2. Overview of tensioning process of and anchoring device of membrane structure.
Construction process of membrane strucutres are outlined in Fig. 2 In this process, temporal supports are first fitted to
the structural members. Obtaining reaction force from the supports, the membrane is pulled (tensioned) by tool until the
preassigned holes of the membrane and are located on the bolt holes of the structural member. Finally, the membrane is
pressed to the frame using tha anchoring device and bolts. However, in this process, there exist the following difficulties:

1. Adjustment of tensile force is very difficult because the holes are assigned at predetermined locations.

2. Temporal supports for obtaining reaction force and tensioning tools are needed in addition to the structural members.

In the following, optimization approaches are presented for overcoming these difficulties. The device is modeled as a
frame consisting of beam rigidly connected elements, and an extended ground structure approach is used for optimizing
the confiuguration (topology and nodal locations) of the frame.

3. Frame model (Type 1)
We first find the overall configuration of the device that automatically clamps the membrane as the result of introducing
tensile forces to the membrane. The device is modeled as a frame with small elastic deformation.

Consider a frame (Type 1) as shown in Fig. 3 as the ground structure for finding the optimal topology, where the
intersecting diagonal members are rigidly connected at the centers. The frame is supported with roller at support 1 and
fixed at supports 2 and 3. The member is supposed to have solid rectangular section with the fixed widthb. A load P is
applied in the negativex-direction at node 1. The total structural volumeV is minimized under constraints such that the
vertical reactionR1 at node 1 is greater than the specified valueR̄.

The design variables are cross-sectional areasA = (A1, . . . ,Am)> of the members, wherem is the number of members.
The upper and lower bounds ofAi is denoted byAU

i andAL
i , respectively. A constraint is given for the maximum absolute

value |σi | of the stress of theith members is less than the specified upper bound ¯σ. Then the optimization problem is
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Figure 3. Frame model (Type 1)

Figure 4. Optimal configuration with stress constraints.

formulated as

minimize V(A) (1a)

subject to |σi | ≤ σ̄ (i = 1, ...,m) (1b)

R1 ≥ R̄ (1c)

AL ≤ A ≤ AU (1d)

Optimization is carried out using the software library SNOPT Ver. 7.2 [5] utilizing sequential quadratic programming.
The sensitivity coefficients are computed with finite difference approach. The elastic modulus of the members is 2.0 ×
105 N/mm2, and the width of each member is 10 mm. A loadP = 500 N is applied in the negativex-direction at node
1. The lower bound̄R for reaction is 200 N. The cross-sectional areas of all the 42 members are independent variables
with lower boundAL

i = 0.1 mm2, whereas different values ofAU
i are used for the optimization problems below. The upper

bound stress is ¯σ = 200 N/mm2. In the following, the units of length and force are mm and N if not explicitly specified.
A uniform random numberr i ∈ [0,1) is generated to obtain the initial value ofAi as 50r i + 1.0. The best solution from ten
different initial solutions is taken as the optimal solution.

Optimization is carried out for the upper-bound cross-sectional areaAU
i = 200. The optimization result after removing

the members withAi = AL
i is as shown in Fig. 4, where the height of each member is drawn with real scale. Note that

the reaction constraint is active asR1 = R̄ = 200.0, and the objective function value isV = 1.1018× 104. The reaction
constraint is active for all optimal solutions below.

If all cross-sectional areas have the same value 10, thenR1 = −137.71; therefore, the direction of reaction has been
successfully reversed through optimization. As is seen from Fig. 4, the number of members is not drastically reduced,
because stress constraints should be satisfied in all members including very thin members. It is well known in truss
topology optimization that the number of members cannot be successfully reduced by conventional ground structure
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Figure 5. Optimal topology for̄U = −0.1.

Figure 6. Optimal topology for̄U = −0.01.

Figure 7. Optimal topology for̄U = −0.1 with stiffness penalizationp = 6.

approach with nonlinear programming [7, 8]. Therefore, we next carry out optimization with displacement constraint and
without stress constraints as follows:

minimize V(A) (2a)

subject to U1 ≥ Ū (2b)

R1 ≥ R̄ (2c)

AL ≤ A ≤ AU (2d)

whereŪ is the lower bound for thex-directional displacementU1 (< 0) of support 1.
Optimal configuration is found for̄U = −0.1 andAU = 1000. The best solution among those from ten different initial

solutions is taken also for this case. The optimal topology is as shown in Fig. 5, where the height of each member is scaled
by 1/5. The optimal objective value isV = 1.6781× 104.

The optimal solution forŪ = −0.01 is as shown in Fig. 6 withV = 6.7593× 104. Therefore, the number of members
decreases and the heights of existing members increase as the displacement constraint becomes tight. However, the
maximum height is 56.439, which is unrealistic. Hence, the displacement bound is conceived as an artificial parameter
for controlling the number of members in optimal topology.

The stiffness of a thin member can be penalized in the similar manner as SIMP method for continuum topology
optimization. For the solid rectangular section with the heighth, the bending stiffness is proportional tohp with p = 3.
However, if we increasep artificially to 6, we obtain the optimal solution as shown in Fig. 7 that has few members.
Therefore, increasingp is equivalent to decreasing the absolute value of displacement bound.

We next solve the optimization problem with stress constraint for the optimal topology in Fig. 6. Note that displace-
ment constraint is not assigned. The optimal solution is as shown in Fig. 8 with real scale, whereV = 1.8748× 104.

The optimal solution is discretized to shorter members, and optimization is carried out again withy-coordinates of
nodes as design variables. LetYi denote the initialy-coordinate of theith node. Then the lower and upper bounds forYi
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Figure 8. Optimal solution under stress constraints.

Figure 9. Optimal solution under stress constraints with variable nodal locations.

Figure 10. Deformed shape of optimal solution under stress constraints with variable nodal locations.
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Figure 11. Illustration of anchoring device (Type 1)

are given asYi − 5 andYi + 20, respectively. The optimal shape is as shown in Fig. 9 withV = 1.7082× 104. Fig. 10
shows the deformed shape with magnification factor 20.

4. Frame model (Type 2)
It has been demonstrated in the previous section that a shape that has increasing clamping force with increasing tensile
force can be found by optimization of cross-sectional areas, topology, and nodal locations of a frame model. From this
result, we can construct an anchoring device as shown in Fig. 11. However, the tensile force cannot be adjusted by pulling
the membrane using this device. Therefore, in the following, optimization is carried out for another frame model (Type
2) as shown in Fig. 12 with vertical force representing the compression force of a bolt. The frame is an simplification of
the device as shown in Fig. 13. The loadsP1 andP2 represent the forces from membrane and bolt, respectively.

The loadP2 = 300 is first applied in the vertical direction at node 2. Then they-directional displacement is fixed at
node 2, and the loadP1 = 500 is applied in the horizontal direction at node 1. Initial solutions are generated in the same
manner as the previous example.

Let U(1)
1 denote the displacement of node 1 againstP1. The displacement of node 1 after application ofP1 andP2 is
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Figure 12. Frame model (Type 2)
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Figure 13. Illustration of anchoring device (Type 2)

Figure 14. Optimal solution of Type 2 under displacement constraint.

denoted byU(2)
1 . Then the optimization problem is stated as

minimize V(A) (3a)

subject toU(1)
1 ≥ Ū(1) (3b)

U(2)
1 ≥ Ū(2) (3c)

AL ≤ A ≤ AU (3d)

Note thatU(1)
1 ≤ 0 andU(2)

1 ≥ 0.
The optimal solution scaled by 1/10 for Ū(1) = −0.01 andŪ(2) = 0.1 is shown in Fig. 14, which has sufficiently small

number of members. Optimization is carried out under stress constraints after subdivision of members. They-coordinates
of nodes are also design variables. The problem is stated as

minimize V(A) (4a)

subject toU(1)
1 ≥ Ū(1) (4b)

U(2)
1 ≥ Ū(2) (4c)

|σ(1)
i | ≤ σ̄ (i = 1, ...,m) (4d)

|σ(2)
i | ≤ σ̄ (i = 1, ...,m) (4e)

AL ≤ A ≤ AU (4f)
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Figure 15. Optimal solution of Type 2 under stress constraints.

Figure 16. Optimal solution of Type 2 under stress constraints; deformation magnified by 20 after application ofP2.

Figure 17. Optimal solution of Type 2 under stress constraints; deformation magnified by 20 after application ofP1 and
P2.

whereσ(1)
i andσ(2)

i are the stresses of memberi againstP1 andP2, respectively. The optimal solution is shown in Fig. 15
with real scale. The deformed shapes againstP2 as well as the shape after application ofP1 and are shown in Fig. 16 and
Fig. 17.

5. Shape optimization utilizing snapthrough.
In the previous examples, we optimized frame models with assumption of small deformation. In this section, optimal
shape is found considering material and geometrical nonlinearities to obtain a device that can be stabilized after deforma-
tion utilizing snapthrough and contact.

Consider a frame model (Type 3) as shown in Fig. 18, where the horizontal coordinates of nodes 1, 2, and 3 are 0, 30,
and 80, respectively. All members consist of beam element except member 6, which is a truss element with cross-sectional
area 20. The width is 10 for all beams. The heights of beams are 2 except 1 for member 1. The material is alminuum
with elastic modulus 7.0× 104, Poisson’s ratio 0.3 and yield stress 200. The linear kinematic hardening with ratio 1/100
is used for beams, whereas the truss is assumed to be elastic.

The design variable vectorX includes they-coordinates of all the nodes except supports. LetX0
i denote the value of

the ith variable in Fig. 18. Then the bounds forXi are given byX0
i − 5.0 andX0

i + 5.0. Forced displacement is given at
node 2 in the vertical direction until the final state when a member contacts node 3. The objective function is the reaction
R4 at node 4 that is to be minimized. A constraint is given for thex-directional displacemnetu2 of node 2 at the final state
asu2 ≤ 1. Then the optimization problem is formulated as

minimize F(X) = −R4 (5)

subject to u2 ≥ 1.0

XL ≤ X ≤ XU

A finite element analysis software package ABAQUS Ver. 6.5 [6] is used for analysis. The frame is modeled by
element beam B21 considering shear deformation, and analysis is carried out by arc-length method. The script language
Python is used for the interface between ABAQUS and optimization package SNOPT.

The optimal shape and its deformed state are shown in Fig. 19. The load-displacement relation at node 4 is plotted
in Fig. 20. The vertical reaction at node 4 at the final state is−11.15 for the initial solution and−2.627 for the optimal
solution. The horizontal displacementu2 is −2.11 mm, which does not satisfy the constraint, for the initial solution, and
1.00 mm for the optimal solution. Since the frame is stable owing to the contact between support 3 and members 4 and
5 , the final state is retained without bolt and the tensile force of membrane is maintained. Furthermore, the tensile force
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Figure 18. Frame model (Type 3)
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Figure 19. Optimal shape and its deformed state
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Figure 20. Load-displacement relation at node 4.

can be adjusted through modification of displacement of node 4.

6. Conclusion
Shape and topology optimization has been carried out for anchoring device of membrane structures modeled by beam
elements. The total structural volume is minimized under constraint on the reaction so that the clamping force increases
as the result of increasing membrane tensile force.

It has been shown that an optimal topology has many members if stress constraints are assigned for all members. This
result is similar to the truss topology optimization under stress constraints. Therefore, an optimal topology with small
number of members is obtained by relaxing the stress constraints and assigning displacement constraint.

Optimal solution with few members can be found if very strict bound for the displacement and very large upper bounds
for cross-sectional areas are given, because the bending stiffness is proportional to the cubic power of the height and a
member with larger height is more efficient than that with smaller height. The stiffness of a member with small height can
also be penalized using the approach similar to the SIMP method for continuum topology optimization.

The optimal topology can be further optimized with subdivided members and stress constraints, where the vertical
coordinates of nodes are also considered as design variables.

A shape of the device that pulls the membrane efficiently by applying vertical force through a bolt can also be found by
optimization. Finally, a device that clamps the membrane without external load has been optimized utilizing snapthrough
and contant.
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