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Abstract  
A hybrid approach of multiobjective optimization and antioptimization is presented for force design of tensegrity 
structures. The objective functions are to maximize the lowest eigenvalue of the tangent stiffness matrix, and to minimize 
the deviation of forces from the specified distribution, which are defined as the worst values due to the possible 
uncertainties. The worst values are found by solving the antioptimization problems using the enumeration of the vertices 
of the uncertain region of the prestresses. The Pareto solutions for the two-objective optimization problem are found using 
a nonlinear programming algorithm for minimizing linear-weighted-sum of the objective functions. It is shown in a 
numerical example that Pareto optimal solutions can be successfully found for a tensegrity grid by solving the two-level 
optimization-antioptimization problem using vertex enumeration technique combined with a nonlinear programming 
approach.. 
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1. Introduction 
A tensegrity structure consists of tensile members, cables, and compressive members, struts [1]. Since the tensegrity 
structure is unstable in absence of prestresses, the shape and stability at the self-equilibrium state strongly depend on the 
distribution of member forces [2–5]. In this study, we study the tensegrity structures consisting of several independent 
modes of prestress, and present a hybrid optimization approach for their robust design of member forces, while 
uncertainties are also taken into consideration. 

The process of determination of member forces for the tensegrity structure with given shape is called force design [6]. 
There have been several optimization approaches developed for force design of tensegrity structures [4,7]. Mechanical 
properties such as the lowest eigenvalue of the tangent stiffness matrix and compliance against specified static loads are 
considered as objective and/or constraint functions.  

It is important in the practical design process that the deviation of forces from their designed values should be taken into 
account for the evaluation of structural performance, due to the unavoidable errors in fabrication and construction 
processes. Moreover, the antioptimal solutions [8] or worst-case designs should then be considered for the objective 
and/or constraint functions. Hence, the problem of designing a structure with the highest structural performance turns out 
to be a hybrid optimization–antioptimization problem [9], while the uncertainties are considered. The antioptimal solution 
that minimizes the concave function can be found by enumerating the vertices of the convex region [10,11], which is the 
case for our problem as will be discussed later. 

When there are more than one performance measures (objective functions), then the problem turns out to be a 
multiobjective programming (MOP) problem [12]. Although numerous works have been presented for antioptimization 
for worst-case design, multiobjective optimization with nonprobabilistic uncertainty has been mainly investigated in the 
field of fuzzy set based theory [13,14], and no detailed investigation has been made in the framework of standard 
nonlinear programming (NLP) problem. Rao [15] defined M-Pareto optimal solution in the space of membership 
functions, and proposed an approach that is similar to a goal programming approach. Loetamonphong et al. [16] used a 
genetic algorithm for generating Pareto optimal set. Some applications of the fuzzy set based approach are found for 
tunneling reinforcement design [17] and planning of water resource system [18]. 

In this paper, we present a multiobjective hybrid optimization–antioptimization method for force design of tensegrity 
structures. The member forces are defined as a linear combination of the self-equilibrium modes. The coefficients of the 
forces are optimized for maximization of the lowest eigenvalue of the tangent stiffness matrix and minimization of the 
deviation of forces from the target values. In the numerical example, a set of Pareto solutions are found for a tensegrity 
grid that has four self-equilibrium force modes. Since the lowest eigenvalue is concave and the force deviation is convex 
with respect to the coefficients for the force modes, the worst-case solutions are found by the enumeration of vertices of 
the convex region of uncertainty. A hybrid approach is presented as a combination of NLP and vertex enumeration, 
respectively, for optimization and antioptimization, where the linear-weighted-sum approach is used for finding a set of 



 
 
Pareto optimal solutions.  
 
2. Basic Formulations of Tensegrity Structures 
In this section, we present the basic formulations for tensegrity structures. The following properties are assumed for a 
tensegrity structure: 

(1) Members are connected by pin joints. 
(2) Topology (connectivity of nodes and members) is specified. 
(3) Self-weight is neglected, and no external load exists at the initial self-equilibrium state. 
(4) Members are in elastic range, and neither buckling nor yielding is considered.  

 
   Consider a structure with n nodes and m members. In the state of self-equilibrium, the equilibrium equation is written as 
 Ds = 0   (1) 
where 3n m×∈ℜD  is the equilibrium matrix and m∈ℜs

 
is the force vector.  

  Let r denote the rank of D. Then the self-equilibrium equation (1) has q m r= −  self-equilibrium force modes, and the 
force vector s can be written in terms of the force modes as follows 
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where α  is the coefficient vector, and G  is the matrix of the self-equilibrium force modes. Let T
ib  denote the ith row of 

G . The force is  of the ith member can obtained as  

 is = T
ib ,        ( 1, , )i m=α    (3) 

  The tangent stiffness matrix is the sum of the linear stiffness matrix EK  and the geometrical stiffness matrix GK  
 E G+K = K K   (4) 
where EK  is determined by the member stiffness as well as configuration, and GK  is determined by the distribution of 
prestresses. In the following discussions, we assume that the rigid-body motions are constrained. 
  Let 1 2 3( )r nλ λ λ λ≤ ≤ ≤

 
and rΦ  denote the rth eigenvalue and its eigenvector of K , respectively, which have following 

relation 
 T  and    ,     ( , 1, ,3 )r r r r s rs r s nλ δ= =KΦ = Φ Φ Φ    (5) 
where rsδ  is the Kronecker delta. Since the magnitude of rλ represents the stiffness of the structure in the direction of 

rΦ , when the external loads applied to the structure are unknown a priori, the best way to strengthen the structure 
might be to increase its stiffness in the weakest direction. Hence, the lowest eigenvlaue minλ  after constraining the 
rigid-body motions is to be maximized, as the performance measure in the optimization problem defined in the next 
section. 
 
3. Multiobjective Hybrid Optimization-antioptimization Problem 
This section presents the formulation of a multiobjective hybrid optimization-antioptimization problem, to find the 
optimal structure taking consideration of uncertainties in force distribution. 
The upper and lower bounds for the forces of the ith member are denoted by U

is  and L
is , respectively. Then the conditions 

for the member forces are written as 
 L U ,     ( 1, , )i i is s s i m≤ ≤ =    (6) 

For a cable, U
is  is given as the yield force divided by the associated safety factor, while a small positive value L

is  is given 

for preventing slackening. By contrast, for a strut, L
is  is given as the Euler buckling force divided by the safety factor, 

while U
is  may be zero or a negative value with sufficiently small absolute value. 

In the process of force design, the geometry (nodal locations) and the topology of the structure are assumed to be 
specified a priori. Therefore, the design variables are the coefficients α  for the self-equilibrium modes. By using the 
relation (3), the constraints for the optimization problems are given with respect to α  as 
 L

is ≤ T
ib U ,     ( 1, , )is i m≤ =α    (7) 

Let ∗s  denote the most desired values of the member forces based on the material properties and the intuition by the 
designer. In the following anti-optimization problem, the deviation e of the forces from ∗s  is used as one of the 
performance measures, which is defined as follows as a convex function of α : 



 
 

 (e ∗= −s G α T) ( ∗ −s G α T T) 2∗ ∗ ∗= −s s s G +α Tα TG G α   (8) 
Furthermore, the lowest eigenvalue minλ  of K after constraining the rigid-body motions is maximized, i.e., minλ−  is 

minimized, as the global measure of stiffness and stability of the structure. Note that GK  depends on α , while EK  is 
independent of α , and minλ  is a concave function of α  [21]. Since it is not generally possible to find an optimal solution 
that minimizes the two objective functions simultaneously, a compromise solution is selected as a solution to an MOP 
problem. A feasible solution satisfying all the constraints is called Pareto optimal solution, if there exists no feasible 
solution in its neighborhood that simultaneously improves the two objective functions [12]. 

The optimization problem is formulated as 
minMinimize  ( )   and  λ− α ( )e α  

 L Tsubject to   i is ≤ b U ,  is≤α ( 1, , )i m=    (9) 
Consider uncertainty in member forces at the self-equilibrium state due to the errors in unstressed (initial) lengths of 

members or change in member lengths after construction resulting from relaxation of high-tensioned cables. Since the 
member force vector s has to satisfy the self-equilibrium equation (1), the errors in s cannot be distributed independently. 
Note that the variation in nodal locations due to the error in member forces is assumed to be very small in the following; 
i.e., the equilibrium matrix D is fixed. Therefore, the vectors ig  of the self-equilibrium force modes are fixed, and the 
variation of the member forces is investigated in the space of the coefficient vector α . 

To describe the realistic situation, we assign the range of uncertainty of s as an interval 
 0 0 ,     ( 1, , )i i i i is s s s s i m− ∆ ≤ ≤ + ∆ =    (10) 

where 0
is  is the nominal value, and is∆  is the maximum possible increase or decrease of is . Note that the range is given 

for the forces is , although the independent parameters for the forces are α . Let 0α  denote the value of α  corresponding 
to the nominal force vectors. Then the inequalities (10) can be rewritten using the increment ∆α  from α  as 
 T

i is−∆ ≤ b ,     ( 1, , )is i m∆ ≤ ∆ =α    (11) 
Then the worst values are obtained by solving the following antioptimization problems:  

minFind            λ min( ) min  λ
∆
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 Tsubject to   i is− ∆ ≤ b ,     ( 1, , )is i m∆ ≤ ∆ =α    (12) 
Find            e ( ) min  e
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 Tsubject to   i is− ∆ ≤ b ,     ( 1, , )is i m∆ ≤ ∆ =α    (13) 
Finally, the multiobjective optimization problem considering the worst values of the performance measures is 

formulated as  

minMinimize   ( )   and  λ− α  ( )e α  
 Tsubject to   i is− ∆ ≤ b ,     ( 1, , )is i m∆ ≤ ∆ =α    (14) 
    It is known that the constraint approach is superior to the linear-weighted-sum approach, because the constraint 
approach can find Pareto optimal solutions even for a nonconvex feasible region in the objective function space. However, 
the location of vertex that has the worst value of an objective function in the antioptimization problem may vary 
discontinuously with variation of the design variables α , and it is very difficult to satisfy the constraints strictly for a 
problem with discontinuous sensitivity coefficients. Therefore, the linear-weighted-sum approach is used in the following 
examples. Optimal solutions are first found for single-objective problems for minimizing min ( )λ− α  and ( )e α , 
respectively. Then, the objective function ( )F α  for the linear-weighted-sum approach is given as 
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where λδ  and eδ  are the range of minλ  and e ,respectively, obtained from the optimal values of the single-objective 
problems, and 0 1C≤ ≤  is the weight coefficient. 
    Since minλ  and e are concave and convex functions, respectively, the worst values of ∆α  that minimizes minλ  and 
maximizes e exist at the vertices of the region of uncertainty defined by (11). In the numerical example in the next section, 
the vertices of the feasible region of the optimization and antioptimization problems are enumerated using the software 
cdd+ [22, 23] based on the efficient procedure called reverse search [24]. cdd+ can enumerate the vertices and the 
associated active constraints of the region defined by linear inequality and equality constraints. Then the antioptimal 
solution is found by vertex enumeration of the feasible region as follows: 



 
 

Step 1: Specify the geometry, topology, material property of the tensegrity structure, the upper bound U
is  and lower 

bound L
is  of the forces, and the radius is∆  of the uncertainty. 

Step 2: Construct the equilibrium matrix D and compute the self-equilibrium force modes ig . 
Step 3: Assign bound constraints (6) for the self-equilibrium forces and solve the optimization problem of forces 

using a nonlinear programming as follows: 
3.1 Set initial values for α , and assign parameters for NLP. 
3.2 Compute the sensitivity coefficients of the objective functions using a finite difference approach, and 

update the variable α  based on the algorithm of NLP, where the worst values of minλ  and e are obtained 
using vertex enumeration at every trial that results in modification of variables. 

3.3 Go to 3.2 if convergence criteria of nonlinear programming are not satisfied. 
 
We use SNOPT Ver. 7.2 [25] that utilizes the sequential quadratic programming for optimization of the upper-level 

problem. In the following examples, optimization is carried out from ten different random initial solutions, and the best 
solution is chosen as the optimal solution. 
 
4. Numerical Examples 
The tensegrity grid [26], as shown in Figure 1, is used as the example structure for demonstrating the effectiveness of the 
proposed method. The structure is constructed by consecutively assembling the unit cell as shown in Figure 2 in x- and 
y-directions. The thick and thin lines in the figures are struts and cables (or bars), respectively. Note that the members in 
thin lines that are connected to the boundary nodes do not carry any prestress at the self-equilibrium state; these members 
are called bars and assumed to have stiffness in both of compression and tension in the structural analysis. 

Let r and c denote the numbers of rows (parallel to x-axis) and columns (parallel to y-axis) of the struts, respectively; 
i.e., there exist r + 1 struts in each column and c + 1 struts in each row. Therefore, the structure has 2rc + r + c struts and 
n = 2(rc + r + c) nodes, and the total number of members is m = 7rc + 5r +5c - 4. The rank deficiency of the linear stiffness 
matrix EK  after constraining the six rigid-body motions is equal to 1; i.e., this structures has only one infinitesimal 
mechanism. 

The structure in Figure 1 has three and four struts in x- and y-directions, respectively; i.e., r = 3 and c = 2. Hence, there 
are m = 63 members and n = 22 nodes in total. The x- and y-coordinates (mm) of the nodes are shown in the plan view of 
the structure in Figure 1(b), and the height of the grid is 100 mm. 

The rank of the equilibrium matrix D is r = 59. Therefore, the structure has four (q = 63 - 59 = 4) force modes at the 
self-equilibrium state, which are denoted by 1 4, ,g g  with the coefficients L U( , )i is s . The bounds T

1 4( , , )α α=α   for 
the axial forces of the cables and struts are (1, 100) and (-100, -1), respectively. We find the Pareto solutions with 
uncertainty of radius 0.5is∆ =  in the axial forces of all members. Note that no bound or uncertainty is given for 
horizontal bars that have vanishing axial force irrespective of the value of α . The units of length and force are mm and N, 
respectively, also for this example. 

      
(a)  Diagonal view                   (b) Plan view 

Figure 1. Tensegrity grid constructed by assembling the unit cell shown in Figure 2 in x- and y-directions. 

 
Figure 2. Unit cell of the tensegrity grid in Figure 1. 



 
 

 
The elastic modulus of all members is 2000.0 N/mm2. The cross-sectional areas are 50 mm2 for struts including the bars 

without prestress, and 5 mm2 for cables. The lowest eigenvalue minλ  of K is positive at all the vertices after constraining 
the rigid body motions; i.e., the structure is stable at any set of self-equilibrium forces in the feasible region. The center of 
the feasible region is computed as * T= (0.4198, 0.5832, 3.2567, 0.4294)α , which is supposed to be the coefficient vector 

corresponding to the target axial forces *s . 
The values of min( , )eλ  for the single objective problem for maximizing minλ  and minimizing e, respectively, are 

(0.07701, 1.5160×104) and (0.05461, 1.2723×104). Therefore the ranges λδ  and eδ   are defined as λδ  = 0.07701 – 
0.05461 = 0.02240 and eδ = 1.5160×104 – 1.2723 ×104 = 0.2437×104. 

The Pareto optimal solutions are found for the weight coefficient C = 0.1, 0.2, …, 0.9 in (15), which are plotted in 
Figure 3 in the objective function space. In order to see the distribution more clearly, the relation between the minimum 
eigenvalue and square-root of force deviation of Pareto optimal solutions is plotted in Figure 4. As is seen, the Pareto 
solutions that form a convex curve in the objective function space have been successfully found using the proposed 
method. 

 
5. Conclusions 
A hybrid approach of multiobjective optimization and antioptimization has been presented for force design of tensegrity 
structures. The design variables are the coefficients of the self-equilibrium force vectors. The objective functions are the 
lowest eigenvalue of the tangent stiffness matrix and the deviation of forces from the specified target distribution, which 
are defined as the worst values due to the possible uncertainties in the variables. 

The upper-level problem of optimization is solved using a nonlinear programming approach, where the sensitivity 
coefficients are computed by a finite difference approach. The lower-level problems for finding the worst values of the 
objective functions are found using the enumeration of the vertices of the uncertain region of the prestresses, which is 
defined with linear inequalities of the variables. It has been shown in the numerical examples that Pareto optimal solutions 
can be successfully found for tensegrity structures by solving the two-level optimization-antioptimization problem using 
vertex enumeration combined with a nonlinear programming approach.  
 

              
 

Figure 3. Pareto optimal solutions.          Figure 4. Minimum eigenvalues and square-root of force deviations. 
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