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Abstract
A method is presented for shape optimization of shell surfaces considering local geometric characteristics that represent
aesthetic aspect and the constructability of the surface. Mechanical performance is also considered in the problem formu-
lation. The surface shape is modeled using Bézier surface to reduce the number of variables, while the ability to generate
moderately complex shape is maintained. The developable surface that has high constructability is created by imposing
appropriate algebraic invariants constraints. A measure of roundness is also defined using the invariant, and a set of trade-
off designs between roundness and mechanical rationality is generated using the constraint approach of multiobjective
programming. It is shown that the sensitivity coefficients of the algebraic invariants can be explicitly derived with respect
to the locations of the control points o the Bźier surface.
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1. Introduction
By contrast to the traditional regular shells such as spherical shell, cylindrical shell, and hyperbolic paraboloid (HP) shell,
so called free-form shells [1–3] are extensively designed for long-span structures for stadiums and arenas. It is mainly
due to advances of computer technologies as well as the developments of structural materials and construction methods.
Free-form shells are described using parametric surfaces, e.g., Bézier surface and non-uniform rational B-spline (NURBS)
surface [4].

Using a parametric surface, the number of design variables can be reduced, while the ability of generating moderately
complex shape is maintained. Therefore, the parametric representation is effectively used for shape optimization of
surfaces, which has been mainly developed in the fields of mechanical engineering and aeronautical engineering [5]. For
application to spatial structures, shape optimization of shell roofs has been extensively studied since 1990s. Ramm et
al. [2] optimized shapes of shells under buckling constraints, where Bézier surface is used for modeling the surface.
However, in those studies, the performance measures that are important in the field of architectural engineering are not
considered.

One of the important aspects in design of shell roofs is that their shapes are basically designed based on the preference
and experience of the architects and structural designers. It may be possible for the designer to assign the most desired
shape explicitly. However, the mechanical behavior of a shell with non-regular shape is complicated, and it is very difficult
for an architect to decide a feasible shape of a real-world structure based on his/her experience and intuition.

Ohsaki et al. [6] presented a shape optimization approach for latticed shells defined using a triangular Bézier patch.
Ohsaki and Hayashi [7] defined a roundness metric for shape optimization of ribbed shells. Ohsaki et al. [8] developed
a multiobjective programming approach to design of round arches and shells based on direct assignment of the center of
curvature. However, in these approaches, only global properties can be controlled, although there are local measures of
geometry to be considered by the designers.

The authors developed a new approach to shape optimization of shells modeled using Bézier surface [9]. The strain
energy is used to represent the mechanical performance, and the local geometrical characteristics are quantified by alge-
braic invariants of the surface representing curvature, convexity, gradient, etc. The requirement for developability of the
surface is incorporated as the constraints on the principal curvature. However, the effectiveness of the approach was not
fully appreciated, because the tensor product Bézier surface was used for a shell with rectangular plan.

In this study, we extend the authors’ approach to utilize triangular Bézier patches that can model a shell with irregular
plan. It is shown that the sensitivity coefficients of the algebraic invariants can be explicitly derived with respect to the
locations of the control points of the Bézier surface. A new invariant is presented for the roundness of the surface. A
multiobjective programming problem is solved using the constraint approach to generate a set of Pareto optimal solutions
as a trade-off between mechanical efficiency and roundness. The effectiveness of the proposed approach is demonstrated
through several numerical examples, and the characteristics of the optimal shapes under various constraints are discussed.
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2. Shape representation by B́ezier surface
The number of variables for optimization can be drastically reduced without sacrificing smoothness and complexity of the
surface using the B́ezier surface. Moreover, the basis functions of Bézier surface can be expressed explicitly with respect
to the coordinates of the control points, which enables us to carry out sensitivity analysis of the algebraic invariants
analytically. The B́ezier surfaces are classified into tensor product Bézier surface and triangular Bézier surface. Since
the latter is more suitable for modeling a surface with irregular plan, the shape of shell surface is described here using a
Bézier surface consisting of triangular Bézier patches, which have control polygons with triangular units.

The pointSn(u, v) on a triangular B́ezier surface in the 3-dimensional space (x, y, z) is defined with parametersu, v ∈
[0,1](u+ v ≤ 1) as

Sn(u, v) =

 x(u, v)
y(u, v)
z(u, v)

 = n∑
i=0

n−i∑
j=0

qi j Bn,i j (u, v), Bn,i j (u, v) =
n!

i! j!(n− i − j)!
uiv j(1− u− v)n−i− j , (00 = 0! = 1) (1)

whereqi j = [qx,i j ,qy,i j ,qz,i j ]⊤ is the location vector of the control point,Bn,i j (u, v) is the bivariate Bernstein basis function,
andn is the order of the surface. The vectors consisting ofx-, y-, andz-coordinates of all control points are denoted by
qx, qy, andqz, respectively; e.g.,qx is defined as

qx = (qx,00, · · · ,qx,n0, · · · ,qx,0i , · · · ,qx(n−i)i , · · · ,qx,0n)⊤ (2)

3. Algebraic invariants

3. 1. Definition of tensors and vectors
We use the six algebraic invariantsβ0, β1, β2, γ1, γ2, andγ3 proposed by Iri et al. [10] for representing the geographical
properties. Here, we regard the z-coordinate of the Bézier surface as the altitude of the geographical representation.

In the following, the covariant and the contravariant components are indicated by the subscript and superscript, re-
spectively. The components of the covariant gradient vectorz, the covariant hessianh, and the covariant metric tensorg
of the surfaceSn(u, v) are defined as

z=
(

zu

zv

)
, h =

(
huu huv

hvu hvv

)
, g =

(
guu guv

gvu gvv

)
(3)

which are obtained from

zs =
∂z(u, v)
∂s

, hst =
∂2z(u, v)
∂s∂t

, gst =
∂Sn(u, v)
∂s

⊤ ∂Sn(u, v)
∂t

, s, t ∈ {u, v} (4)

Let z and g denote the contravariant gradient of thez-coordinate and the contravariant metric tensor, respectively.
Then the following relations hold:

g = g−1, z= gz, z= gz (5)

Furthermore, we define the following contravariant vectorz̃ and tensor̃E:

z̃=
(

z̃u

z̃v

)
= Ẽz, Ẽ =

(
0 1
−1 1

)
(6)

The inner product of a covariant vector and a contravariant vector as well as the bilinear form with respect to a second
order covariant/contravariant tensor and a contravariant/covariant vector are invariant with respect to the definition of the
parameter of the surface. Hence,β- andγ-invariants are defined as follows[10]:

β0 =
∑
ξ=s,t

∑
λ=s,t

gξλzξzλ =
∑
ξ=s,t

zξzξ (≥ 0), β1 =
∑
ξ=s,t

∑
λ=s,t

hλξg
ξλ, β2 =

1
2det(g)

∑
ξ=s,t

∑
λ=s,t

∑
µ=s,t

∑
ν=s,t

hνλhµξẼ
ξλẼµν (7)

γ1 =
∑
λ=s,t

∑
ξ=s,t

hλξz
ξzλ, γ2 =

∑
λ=s,t

∑
ξ=s,t

hλξz̃
ξzλ =

∑
λ=s,t

∑
ξ=s,t

hλξz
ξz̃λ, γ3 =

1
det(g)

∑
λ=s,t

∑
ξ=s,t

hλξz̃
ξz̃λ (8)

These equations can also be expressed in a matrix form as follows:

β0 = z⊤z= z⊤gz, β1 = e⊤1 hge1 + e⊤2 hge2, e1 = ( 1 0)⊤ ,e2 = ( 0 1)⊤ , β2 =
det(h)

det(g)
(9)

γ1 = z⊤hz= g⊤z⊤hgz, γ2 = z⊤hz̃= g⊤z⊤hẼz, γ3 =
Ẽ
⊤

z⊤hẼz

det(g)
(10)
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3. 2. Surface properties based on six algebraic invariants
The six algebraic invariantsβ0, β1, β2, γ1, γ2, andγ3, defined using the vectors and tensors given in Sec.3. 1. , are used for
quantitative evaluation of the surface properties. The local properties in the neighborhood of a point P on the surface are
characterized by the invariants as follows:

β2 > 0 The contours in the neighborhood of P are coaxial (part of) similar ellipses. The shape is locally concave ifβ1 > 0,
and locally convex ifβ1 < 0.

β2 < 0 The contours in the neighborhood of P are (part of) coaxial hyperbolas. Locally, the surface is convex in some
directions and concave in others. There are special directions in which the contour lines are straight.

β2 = 0 One of the principal curvatures is 0. Furthermore, the other principal curvature is positive ifβ1 > 0; and negative
if β1 < 0; and 0 ifβ1 = 0 that means a locally flat surface.

β0 = 0 P is a critical point (locally maximum/minimum value ofz-coordinate).

γ2 = 0 Direction of gradient vector coincides with one of the principal direction, and the surface near P is locally cylin-
drical and concave in one principal direction if|γ1| < |γ3| andγ3 > 0; whereas it is locally cylindrical and convex in
one principal direction if|γ1| < |γ3| andγ3 < 0.

Moreover,β1/2 is the mean curvature,β2 is the Gaussian curvature,γ1/β0 is the curvature in the steepest descent direction,
andγ3/β0 is the curvature in its perpendicular direction.

In view of constructability, it is desirable that the surface can be developed to a plane without expansion or contraction.
Such surface is called developable surface, which is characterized by vanishing Gaussian curvature. Therefore, to generate
a developable surface, the constraintβ2 = 0 should be satisfied at any point on the surface.

We define an additional invariant for characterizing roundness of the surface as follows.

α ==
1
4

(κ1 − κ2)2 (11)

whereκ1 andκ2 are the principal curvatures, respectively. A small value ofα corresponds to a locally spherical surface.

4. Sensitivity analysis
In the following numerical examples, the sequential quadratic programming, which is categorized as a gradient-based
method and available from a software library in SNOPT [11], is used for optimization. Therefore, sensitivity coefficients
of the invariants are needed with respect to the locations of the control points. For instance, for obtaining sensitivity
coefficients of the algebraic invariants with respect to thez-coordinatesqz of the control points, those of the gradient,
Hessian, and the metric tensor are needed. Owing to the representation of the surface using triangular Bézier patch, these
sensitivity coefficients can be derived explicitly as follows:

∂z

∂qz,i j
=


∂zu

∂qz,i j

∂zv

∂qz,i j

 =

∂Bn,i j (u, v)

∂u

∂Bn,i j (u, v)

∂v

 (12)

∂h

∂qz,i j
=


∂huu

∂qz,i j

∂huv

∂qz,i j

∂hvu

∂qz,i j

∂hvv

∂qz,i j

 =

∂2Bn,i j (u, v)

∂u2

∂2Bn,i j (u, v)

∂u∂v

∂2Bn,i j (u, v)

∂u∂v

∂2Bn,i j (u, v)

∂v2

 (13)

∂g

∂qz,i j
=


∂guu

∂qz,i j

∂guv

∂qz,i j

∂gvu

∂qz,i j

∂gvv

∂qz,i j

 =


2zu
∂zu

∂qz,i j

∂zu

∂qz,i j
zv + zu

∂zv

∂qz,i j

∂zu

∂qz,i j
zv + zu

∂zv

∂qz,i j
2zv
∂zv

∂qz,i j

 (14)
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4. 1. Sensitivity ofβ invariants
The next equation is provided by partial differentiation of Eq. (9) inqz,i j as follows:

∂β0

∂qz,i j
=
∂z

∂qz,i j

⊤
gz+ z⊤

∂g
∂qz,i j

z+ z⊤g
∂z

∂qz,i j
(15)

∂β1

∂qz,i j
= e⊤1

∂h

∂qz,i j
ge1 + e⊤1 h

∂g
∂qz,i j

e1 + e⊤2
∂h

∂qz,i j
ge2 + e⊤2 h

∂g
∂qz,i j

e2 (16)

∂β2

∂qz,i j
=
∂det(h)

∂qz,i j
det(g)−1 + det(h)

∂det(g)−1

∂qz,i j
(17)

It is difficult to calculate
∂g
∂qz,i j

explicitly. Therefore we obtain the next equation by partial differentiation ofgg = I in

qz,i j :
∂g
∂qz,i j

g+ g
∂g

∂qz,i j
= 0 (18)

Therefore, the next expression holds:
∂g
∂qz,i j

= −g
∂g

∂qz,i j
g (19)

And Eq. (17) is obtained from
∂det(h)

∂qz,i j
=
∂hss

∂qz,i j
htt + hss

∂htt

∂qz,i j
− 2hst

∂hst

∂qz,i j
(20)

∂det(g)−1

∂qz,i j
=
∂(gssgtt − g2

st)
−1

∂qz,i j
= − 1

(gssgtt − g2
st)2

(
∂gss

∂qz,i j
gtt + gss

∂gtt

∂qz,i j
− 2gst

∂gst

∂qz,i j

)
(21)

4. 2. Sensitivity ofγ invariants
The next equation is provided by considering partial differentiation of Eq. (10) inqz,i j as follows:

∂γ1

∂qz,i j
=
∂z

∂qz,i j

⊤
ghgz+ z⊤

∂g
∂qz,i j

hgz+ z⊤g
∂h

∂qz,i j
gz+ z⊤gh

∂g
∂qz,i j

z+ z⊤ghg
∂z

∂qz,i j
(22)

∂γ2

∂qz,i j
=
∂z

∂qz,i j

⊤
ghẼz+ z⊤

∂g
∂qz,i j

hẼz+ z⊤g
∂h

∂qz,i j
Ẽz+ z⊤ghẼ

∂z

∂qz,i j
(23)

∂γ3

∂qz,i j
=
∂z

∂qz,i j

⊤
ẼhẼzdet(g)−1 + z⊤Ẽ

∂h

∂qz,i j
Ẽzdet(g)−1 + z⊤ẼhẼ

∂z

∂qz,i j
det(g)−1 + z⊤ẼhẼz

∂det(g)−1

∂qz,i j
(24)

5. Bézier surface with triangular plan

Pin support
30m

30m30m

Control point

30m

30m30m

(a) (b)

Figure 1 : Shell surface with triangular plan (Model 1); (a) plan and diagonal view, (b) Bézier patch and control points.

Consider first a shell surface with triangular plan (Model 1) that consists of a Bézier surface with triangular plan as shown
in Figure 1. The shell is pin-supported at the three corners; however, there exist two supports at each corner, as shown
in blank circles in Figure 1, to prevent stress concentration. The span length is 30 m and the radius of curvature is 17.06
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m, which result in the rise of 4.84 m. The middle surface of shell is modeled using the triangular Bézier patch of order
5. The z-coordinates of all the 15 control points, as shown in filled circles, are chosen as variables, while the locations
of the supports are fixed by assigning the constraints. The shell is discretized to triangular finite elements for static
analysis. The constant-strain element [12] is used for in-plane deformation, and the non-conforming triangular element
by Zienkiewicz et al. [13] is used for out-of-plane deformation. Each node has six degrees of freedom, and the two
elements are coupled with respect to the translational displacements. The number of elements for static analysis is 253.
The shell has the uniform thickness of 0.1 m and is subjected to self-weight, which is supposed to be sufficiently small so
that the deformation is small and the shell remains in the elastic range. The material of is supposed to be concrete with
Young’s modulus 21.0 kN/mm2, Poisson’s ratio 0.17, and weight density 24.0 kN/m3.

In each of the optimization problem formulated below, the total number of degrees of freedom, nodal displacement
vector, linear stiffness matrix, total middle-surface area, and vector consisting of z-coordinates the supports are denoted
by m, d ∈ Rm, K ∈ Rm×m, S, andr∗ ∈ R6, respectively. The value of initial shape is denoted by the subscript 0. The design
variables are thez-coordinatesqz of the control points, because various shapes can be successfully represented by varying
z-coordinates only.

5. 1. Minimization of strain energy without constraints on algebraic invariants
We first find the optimal shape without constraint on an algebraic invariant. The strain energy is minimized as follows
under upper-bound constraint on the area:

minimize f (qz) =
1
2

d⊤Kd

subject to

{
S(qz) − S0 = 0
r∗z(qz) − r∗z,0 = 0

(25)

The initial and optimal shapes are shown in Figures 2 and 3, respectively, and their mechanical performances are listed
in the second and third columns of Table 1. It can be confirmed from the optimization result that the bending and tensile
stresses are reduced and the shape is optimized so that the shell resists the self-weight mainly with compression.

Figure 2 : Initial Shape of Model 1 Figure 3 : Optimal shape of Problem (25)

5. 2. Minimization of strain energy under constraints onβ-invariants
We next consider the following optimization problem by introducing the constraints onβ-invariants to obtain a locally
convex surface:

minimize f (qz) =
1
2

d⊤Kd

subject to


S(qz) − S0 = 0
r∗z(qz) − r∗z,0 = 0
βc

2(qz) > 0
βc

1(qz) ≤ β̄ Point at whichβ-invariants are constrained

(26)

whereβ̄ < 0 ensures convexity around the point indicated by the filled square in the Figure. The values of the constrained

point are denoted by the superscriptc. Figures 4 and 5 show the optimization results forβ̄ = −0.1 and 0.2, respectively.
The mechanical properties are listed in the fourth and fifth columns of Table 1. As is seen, the maximum values of
displacement, compressive stress, and bending stress increase as a result of assigning requirement of local convexity. The
maximum displacement and stresses also increase as the absolute value ofβc

1 is increased to generate more locally convex
surface.
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Figure 4 : Optimal shape of Problem (26) (β̄ = −0.1) Figure 5 : Optimal shape of Problem (26) (β̄ = −0.3)

5. 3. Minimization of strain energy under constraints onγ-invariants
We next solve the following problem with constraints onγ-invariants to obtain locally cylindrical and concave surface:

minimize f (qz) =
1
2

d⊤Kd

subject to



S(qz) − S0 = 0
r∗z(qz) − r∗z,0 = 0
γci

2 (qz) = 0
γci2

3 (qz) − γci2
1 (qz) > 0 (i=1,2)

γci
3 (qz) ≥ γ̄ci Point at whichγ-invariants are constrained

(27)

where the constraints on the invariants are given at pointsci(i = 1,2) indicated by the filled square in the Figure. Figures
6 and 7 show the optimization results for ¯γci = 0.004 and 0.006, respectively. It can be confirmed that a locally cylindrical
and concave surface has been successfully obtained by introducing the constraints on theγ-invariants. The maximum
displacement and stresses listed in the last two columns of Table 1 also increase as the value of ¯γci is increased to generate
more locally cylindrical and concave surface.

Figure 6 : Optimal shape of Problem (27) (¯γ = 0.004) Figure 7 : Optimal shape of Problem (27) (¯γ = 0.006)

Table 1 : Mechanical properties of initial and optimal shapes of Model 1

Initial Without β̄ = −0.1 β̄ = −0.2 γ̄ = 0.004 γ̄ = 0.006
(Fig.2) invariants (Fig.4) (Fig.5) (Fig.6) (Fig.7)

(Fig.3)
Strain energy [kNm] 5.733 0.669 0.860 1.650 0.737 1.504

Max. vertical disp. [mm] 59.88 3.432 6.931 13.00 4.236 9.925
Max. compressive stress [N/mm2] 3.600 2.613 2.926 4.129 2.978 5.780

Max. tensile stress [N/mm2] 0.917 0.114 0.077 0.197 0.176 0.789
Max. bending stress [N/mm2] 6.927 0.585 0.843 2.333 0.673 1.787

5. 4. Minimization ofα-invariant and strain energy
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Finally, we consider the following multiobjective optimization problem for minimizing the strain energy and sum of
α-invariants at the 15 points indicated by filled square in the Figure:

minimize


f (qz) =

1
2

d⊤Kd

g(qz) =
15∑
i=1

αci

subject to

{
S − S0 = 0
r∗z − r∗z,0 = 0 Point at whichα-invariants are measured

(28)

To solve this problem using the constraint method for multiobjective programming, we convert the problem to the follow-
ing two single-objective optimization problems:

minimize f (qz)

subject to


S(qz) − S0 = 0
r∗z(qz) − r∗z,0 = 0
g(qz) − ḡ ≤ 0

(29)

minimize g(qz)

subject to


S(qz) − S0 = 0
r∗z(qz) − r∗z,0 = 0
f (qz) − f̄ ≤ 0

(30)

whereḡ and f̄ are the upper bounds of the sum ofα-invariants and the strain energy, respectively. The Pareto optimal
solutions are found parametrically by solving Problem (29) for the region of large strain energy and Problem (30) for
the region of largeα-invariants, where the upper bound are parametrically varied. Figure 8 shows Pareto front and
its mechanical properties, and Figures 9-11 show several Pareto optimal solutions with contour lines. The mechanical
quantities are also shown Table 2. As is seen from these figures, the shell surface approaches a spherical surface asg(qz)
is decreased. Although the shape of optimal solution forf̄ = 1.0 is almost similar to the initial shape that has an almost
spherical surface, the stiffness of the optimal shape is much larger than that of the initial shape. This way, a mechanically
efficient surface consisting of truncated spherical surface can be generated by optimization.

Strain energy minimum solution
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f 
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n
v
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n
ts

Strain energy

reach to spherical surface solution

minimizing         minimizing

Maximum compressive stress

Maximum tensile stress

Maximum bending stress

Maximum vertical displacement

P
ri

n
ci

p
al

 s
tr

es
s

V
ertical d

isp
lacem

en
t

Figure 8 : Pareto front and its mechanical properties

Table 2 : Mechanical properties of several Pareto optimal solutions consideringα-invariants and strain energy
ḡ = 0.02 f̄ = 0.76 f̄ = 1.00 Initial
(Fig. 9) (Fig. 10) (Fig. 11) (Fig. 2)

Strain energy [kNm] 0.672 0.760 1.000 5.733
Sum ofα invariants 0.020 1.6× 103 4.5× 104 2.9× 106

Max. vertical disp. [mm] 3.419 3.783 11.99 59.88
Max. compressive stress [N/mm2] 2.593 2.661 2.986 3.600

Max. tensile stress [N/mm2] 0.118 0.041 0.145 0.917
Max. bending stress [N/mm2] 0.611 0.404 1.367 6.927
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(a) elevation and diagonal view
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(b) contour line of vertical coordinates

Figure 9 : Optimal shape of
Problem (29) (¯g = 0.02)

Figure 10 : Optimal shape of
Problem (30) (̄f = 0.76)

Figure 11 : Optimal shape of
Problem (30)(̄f = 1.00)

6. Bézier surface with irregular plan
So far, we considered a surface with regular triangular plan. In this section, optimal shapes are found for the shell surface
with irregular plan (Model 2) as shown in Figure 12, in order to demonstrate the effectiveness of using the triangular
Bézier patch. The geometry of the control net is also shown in Figure 12. The rise is 8.0 m, and other parameters are the
same as those of Model 1 in Sec. 5. The surface is modeled using ten triangular Bézier patches of order 4, and the design
variables are the z-coordinatesqz of 52 control points as shown in the filled circle in Figure 12, where the symmetry
conditions are utilized and the locations of supports are fixed. The structural analysis is carried out considering symmetry
conditions. The continuity of gradient and curvature along the interior boundary between Bézier patches is not necessarily
satisfied.

10m 10m40m

Fixed support

(a) plan and diagonal view

(b) Bézier patch and control points

Figure 12 : Shell surface with triangular plan (Model 2)

6. 1. Minimization of strain energy without constraints on algebraic invariants

8



We first find the optimal shape without constraint on an algebraic invariant. The following optimization problem is same
as Problem (25):

minimize f (qz) =
1
2

d⊤Kd

subject to S(qz) − S0 = 0
(31)

The initial and optimal shapes are shown in Figures 13 and 14, respectively. The mechanical quantities are also shown
in the second and third columns of Table 3. It can be confirmed from the optimization results that the bending and
tensile stresses are reduced and the shape is optimized so that the shell resists the self-weight mainly with compression
in the similar manner as Model 1. However, the optimal shape depends on the load patters; therefore, multiple loading
conditions should be considered for practical application. Note that the gradients are not continuous along the internal
boundaries between the Bézier patches of the optimal shape. Globally smooth surface can be generated, if necessary, by
assigning constraints on continuity of tangent vector (G1-continuity) between two adjacent patches [14].

Figure 13 : Initial Shape of Model 1 Figure 14 : Optimal shape of Problem (25)

6. 2. Minimization of strain energy under developability constraint
Next, we generate a developable surface by shape optimization. The following problem is to be solved so thatβ2 vanishes
at 105 points indicated by the filled squares in the Figure:

minimize f (qz) =
1
2

d⊤Kd

subject to

 S(qz) − S0 = 0
βci

2 (qz) = 0
(i=1,··· ,105) Points at whichβ-invariants are constrained

(32)

The optimal shape is shown in Figure. 15(a). Althoughβ2 is not guaranteed to vanish at the point where the constraint is
not given, the contour lines became almost straight and parallel as shown in Figure 15(b), Hence, each of the 1/5 parts of
the shell is nearly developable. Furthermore, both of the strain energy and maximum vertical displacement have smaller
values than the initial shape as shown in the last column of Table 3. Note that a developable surface cannot be generated
if continuity of gradient is assigned along the internal boundaries.

(a) elevation and diagonal view
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5.0

4.0

3.0

2.0
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(b) contour line of vertical coordinates

Figure 15 : Optimal shape of Problem (25)
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Table 3 : Mechanical properties of initial and optimal solutions

Initial Without invariants With developability condition
(Fig. 13) (Fig. 14) (Fig. 15)

Strain energy [kNm] 26.27 5.475 5.685
Max. vertical disp. [mm] 47.10 3.719 4.683

Max. compressive stress [N/mm2] 16.22 8.266 8.500
Max. tensile stress [N/mm2] 3.543 0.299 0.311

Max. bending stress [N/mm2] 9.941 0.420 0.584

7. Conclusions
The local properties of the shell surface can be explicitly controlled by solving an optimization problem with constraints on
the algebraic invariants of the surface. Nonlinear programming can be efficiently used because the sensitivity coefficients
of invariants with respect to the locations of control points are explicitly derived. Furthermore, a developable surface can
be obtained by assigning the constraint such that the Gaussian curvature vanishes everywhere on the surface. The trade-off

relation between roundness and stiffness of the shell has been investigated using the constraint approach of multiobjective
programming.

Hence, it may be concluded that the algebraic invariants are effective indices representing the local properties of the
surface, and the optimal shell shape considering the aesthetic aspects, constructability and mechanical rationality can be
generated using the proposed approach at the early design stage.
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