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Abstract

A method is presented for shape optimization of shell surfaces considering local geometric characteristics that represent
aesthetic aspect and the constructability of the surface. Mechanical performance is also considered in the problem formu-
lation. The surface shape is modeled usirgzi@r surface to reduce the number of variables, while the ability to generate
moderately complex shape is maintained. The developable surface that has high constructability is created by imposing
appropriate algebraic invariants constraints. A measure of roundness is also defined using the invariant, and a set of trade-
off designs between roundness and mechanical rationality is generated using the constraint approach of multiobjective
programming. It is shown that the sensitivity éidgents of the algebraic invariants can be explicitly derived with respect

to the locations of the control points o theiBr surface.
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1. Introduction

By contrast to the traditional regular shells such as spherical shell, cylindrical shell, and hyperbolic paraboloid (HP) shell,
so called free-form shells [1-3] are extensively designed for long-span structures for stadiums and arenas. It is mainly
due to advances of computer technologies as well as the developments of structural materials and construction methods.
Free-form shells are described using parametric surfaces, éaerBurface and non-uniform rational B-spline (NURBS)
surface [4].

Using a parametric surface, the number of design variables can be reduced, while the ability of generating moderately
complex shape is maintained. Therefore, the parametric representatiffiedsvely used for shape optimization of
surfaces, which has been mainly developed in the fields of mechanical engineering and aeronautical engineering [5]. For
application to spatial structures, shape optimization of shell roofs has been extensively studied since 1990s. Ramm et
al. [2] optimized shapes of shells under buckling constraints, whémeB surface is used for modeling the surface.
However, in those studies, the performance measures that are important in the field of architectural engineering are not
considered.

One of the important aspects in design of shell roofs is that their shapes are basically designed based on the preference
and experience of the architects and structural designers. It may be possible for the designer to assign the most desired
shape explicitly. However, the mechanical behavior of a shell with non-regular shape is complicated, and it ety di
for an architect to decide a feasible shape of a real-world structure basedraar kigperience and intuition.

Ohsaki et al. [6] presented a shape optimization approach for latticed shells defined using a triadzjelap&ch.

Ohsaki and Hayashi [7] defined a roundness metric for shape optimization of ribbed shells. Ohsaki et al. [8] developed
a multiobjective programming approach to design of round arches and shells based on direct assignment of the center of
curvature. However, in these approaches, only global properties can be controlled, although there are local measures of
geometry to be considered by the designers.

The authors developed a new approach to shape optimization of shells modeled ésimgsBrface [9]. The strain
energy is used to represent the mechanical performance, and the local geometrical characteristics are quantified by alge-
braic invariants of the surface representing curvature, convexity, gradient, etc. The requirement for developability of the
surface is incorporated as the constraints on the principal curvature. Howeveftetttveness of the approach was not
fully appreciated, because the tensor produ&ziBr surface was used for a shell with rectangular plan.

In this study, we extend the authors’ approach to utilize triangudeie8 patches that can model a shell with irregular
plan. It is shown that the sensitivity dieients of the algebraic invariants can be explicitly derived with respect to the
locations of the control points of the&Rier surface. A new invariant is presented for the roundness of the surface. A
multiobjective programming problem is solved using the constraint approach to generate a set of Pareto optimal solutions
as a trade-b between mechanicafiiciency and roundness. Thé&ectiveness of the proposed approach is demonstrated
through several numerical examples, and the characteristics of the optimal shapes under various constraints are discussed.



2. Shape representation by Bzier surface
The number of variables for optimization can be drastically reduced without sacrificing smoothness and complexity of the
surface using the &ier surface. Moreover, the basis functions ézBr surface can be expressed explicitly with respect
to the coordinates of the control points, which enables us to carry out sensitivity analysis of the algebraic invariants
analytically. The Ezier surfaces are classified into tensor produ&i®& surface and triangularéBier surface. Since
the latter is more suitable for modeling a surface with irregular plan, the shape of shell surface is described here using a
Bézier surface consisting of triangulaéBer patches, which have control polygons with triangular units.

The pointS,(u, v) on a triangular Bzier surface in the 3-dimensional spaggy(2) is defined with parametersv €
[0,1J(u+Vv<1)as

x(u, v) n n-i ni o o
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whereq;; = [Oxij, Qyij» dzij] T is the location vector of the control poiry;; (u, v) is the bivariate Bernstein basis function,
andn is the order of the surface. The vectors consisting-pf-, andz-coordinates of all control points are denoted by
dy, Oy, andq,, respectively; e.gqy is defined as

q)( = (qX,OO’ ) qX,I’]O’ RS qX,Oi’ Y qx(n—i)i, Tt QX,On)T (2)

3. Algebraic invariants

3. 1. Definition of tensors and vectors
We use the six algebraic invariarg 81, 82, v1, v2, andys proposed by Iri et al. [10] for representing the geographical
properties. Here, we regard the z-coordinate of tBei& surface as the altitude of the geographical representation.

In the following, the covariant and the contravariant components are indicated by the subscript and superscript, re-
spectively. The components of the covariant gradient vegttite covariant hessiam, and the covariant metric tensgr
of the surfaces,(u, v) are defined as B
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Let Z andg denote the contravariant gradient of theoordinate and the contravariant metric tensor, respectively.
Then the following relations hold:

g=9g' z=1z
Furthermore, we define the following contravariant ve&and tensoE:

e=(3 )-8z E-( 5 1) ©®

The inner product of a covariant vector and a contravariant vector as well as the bilinear form with respect to a second
order covariarftontravariant tensor and a contravarjaavariant vector are invariant with respect to the definition of the
parameter of the surface. Hengeandy-invariants are defined as follows[10]:
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These equations can also be expressed in a matrix form as follows:

det(n)
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3. 2. Surface properties based on six algebraic invariants

The six algebraic invarianfy, 81, B2, v1, v2, andys, defined using the vectors and tensors given in Sec.3. 1., are used for
guantitative evaluation of the surface properties. The local properties in the neighborhood of a point P on the surface are
characterized by the invariants as follows:

B2 > 0 The contours in the neighborhood of P are coaxial (part of) similar ellipses. The shape is locally coAcave,if
and locally convex if3; < 0.

B2 < 0 The contours in the neighborhood of P are (part of) coaxial hyperbolas. Locally, the surface is convex in some
directions and concave in others. There are special directions in which the contour lines are straight.

B2 = 0 One of the principal curvatures is 0. Furthermore, the other principal curvature is posgtjive #; and negative
if B1 < 0; and 0 if3; = 0 that means a locally flat surface.

Bo = 0 P is acritical point (locally maximuyfminimum value ofz-coordinate).

v2> = 0 Direction of gradient vector coincides with one of the principal direction, and the surface near P is locally cylin-
drical and concave in one principal directiomif| < |ys| andys > 0; whereas it is locally cylindrical and convex in
one principal direction ify1| < |ys| andys < 0.

Moreover;/2 is the mean curvaturg; is the Gaussian curvaturg,/Bg is the curvature in the steepest descent direction,
andys/B is the curvature in its perpendicular direction.

In view of constructability, it is desirable that the surface can be developed to a plane without expansion or contraction.
Such surface is called developable surface, which is characterized by vanishing Gaussian curvature. Therefore, to generate
a developable surface, the constrgisnt= 0 should be satisfied at any point on the surface.

We define an additional invariant for characterizing roundness of the surface as follows.

o == 300 - (11)

wherek; andk; are the principal curvatures, respectively. A small value obrresponds to a locally spherical surface.

4. Sensitivity analysis

In the following numerical examples, the sequential quadratic programming, which is categorized as a gradient-based
method and available from a software library in SNOPT [11], is used for optimization. Therefore, sensititfityi ks

of the invariants are needed with respect to the locations of the control points. For instance, for obtaining sensitivity
codficients of the algebraic invariants with respect to #repordinatesy, of the control points, those of the gradient,
Hessian, and the metric tensor are needed. Owing to the representation of the surface using trianigulpah, these
sensitivity codficients can be derived explicitly as follows:
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4. 1. Sensitivity of3 invariants
The next equation is provided by partiafférentiation of Eq. (9) im,;; as follows:
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4. 2. Sensitivity ofy invariants
The next equation is provided by considering partiffiedlentiation of Eq. (10) im;; as follows:
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5. Bézier surface with triangular plan
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Figure 1 : Shell surface with triangular plan (Model 1); (a) plan and diagonal view,&bieBpatch and control points.
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Consider first a shell surface with triangular plan (Model 1) that consists éz@&Bsurface with triangular plan as shown
in Figure 1. The shell is pin-supported at the three corners; however, there exist two supports at each corner, as shown
in blank circles in Figure 1, to prevent stress concentration. The span length is 30 m and the radius of curvature is 17.06



m, which result in the rise of 4.84 m. The middle surface of shell is modeled using the trianguiar Batch of order
5. The z-coordinates of all the 15 control points, as shown in filled circles, are chosen as variables, while the locations
of the supports are fixed by assigning the constraints. The shell is discretized to triangular finite elements for static
analysis. The constant-strain element [12] is used for in-plane deformation, and the non-conforming triangular element
by Zienkiewicz et al. [13] is used for out-of-plane deformation. Each node has six degrees of freedom, and the two
elements are coupled with respect to the translational displacements. The number of elements for static analysis is 253.
The shell has the uniform thickness of 0.1 m and is subjected to self-weight, which is supposedficieatiyismall so
that the deformation is small and the shell remains in the elastic range. The material of is supposed to be concrete with
Young’s modulus 21.0 kMnm2, Poisson’s ratio 0.17, and weight density 24.0rkh

In each of the optimization problem formulated below, the total number of degrees of freedom, nodal displacement
vector, linear stiness matrix, total middle-surface area, and vector consisting of z-coordinates the supports are denoted
bym, d e R", K e R™™ S andr* € RS, respectively. The value of initial shape is denoted by the subscript 0. The design
variables are the-coordinatesy, of the control points, because various shapes can be successfully represented by varying
z-coordinates only.

5. 1. Minimization of strain energy without constraints on algebraic invariants
We first find the optimal shape without constraint on an algebraic invariant. The strain energy is minimized as follows
under upper-bound constraint on the area:

minimize f(q,) = %dTKd
S(4) < Se=0 (25)

subject to B .
) {um44w=o

The initial and optimal shapes are shown in Figures 2 and 3, respectively, and their mechanical performances are listed
in the second and third columns of Table 1. It can be confirmed from the optimization result that the bending and tensile
stresses are reduced and the shape is optimized so that the shell resists the self-weight mainly with compression.

Figure 2 : Initial Shape of Model 1 Figure 3 : Optimal shape of Problem (25)

5. 2. Minimization of strain energy under constraintsgsimvariants
We next consider the following optimization problem by introducing the constrainfsiovariants to obtain a locally
convex surface:

minimize f(q,) = %dTKd

S(qz) - SO =0 26
. r;(a) — 1o =0 (26)
subject to z0 KRR
,8°(q ) >0 FAYAAVAVAVAVAVAVAVAVAVAVAVAVAS
g Z = WNANNNNNNNNNNN Y
< . . . . .
Fi(a) < Point at whichs-invariants are constrained

where,8_< 0 ensures convexity around the point indicated by the filled square in the Figure. The values of the constrained

point are denoted by the superscriptFigures 4 and 5 show the optimization resultsdct —0.1 and 0.2, respectively.

The mechanical properties are listed in the fourth and fifth columns of Table 1. As is seen, the maximum values of
displacement, compressive stress, and bending stress increase as a result of assigning requirement of local convexity. The
maximum displacement and stresses also increase as the absolute yélissméreased to generate more locally convex
surface.



=

—
—

=
=
==
==
<3
<
=S
<

=

VA

=

\

Figure 4 : Optimal shape of Problem (26)£ —0.1) Figure 5 : Optimal shape of Problem (26)+4 —0.3)

5. 3. Minimization of strain energy under constraintsyeimvariants
We next solve the following problem with constraintsyinvariants to obtain locally cylindrical and concave surface:

minimize f(q,) = %dTKd

S(qz) - SO =0
r;(Q) — o =0 27)
subject to 7§'(qz) =0 RIRPERRIIIIEHAK
v (q,) — y(q,) > 0 (-12) GRARRRRRRAG
3 \Hz 1 \Mz = . S . .
¥5(ay) = ¥ Point at whichy-invariants are constrained

where the constraints on the invariants are given at pai(its- 1, 2) indicated by the filled square in the Figure. Figures
6 and 7 show the optimization results §ét = 0.004 and 0.006, respectively. It can be confirmed that a locally cylindrical
and concave surface has been successfully obtained by introducing the constrainty-emvéinants. The maximum
displacement and stresses listed in the last two columns of Table 1 also increase as theyfhisineféased to generate
more locally cylindrical and concave surface.
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Figure 6 : Optimal shape of Problem (27%)+£ 0.004) Figure 7 : Optimal shape of Problem (2¥)<0.006)

Table 1 : Mechanical properties of initial and optimal shapes of Model 1
Initial | Without | 8= —0.1 | 3= -0.2 | y = 0.004 | ¥ = 0.006
(Fig.2) | invariants| (Fig.4) (Fig.5) (Fig.6) (Fig.7)

(Fig.3)
Strain energy [KNm] 5.733 0.669 0.860 1.650 0.737 1.504
Max. vertical disp. [mm] 59.88 3.432 6.931 13.00 4.236 9.925

Max. compressive stress [Mn?] | 3.600 2.613 2.926 4.129 2.978 5.780
Max. tensile stress [Min¥] 0.917 0.114 0.077 0.197 0.176 0.789
Max. bending stress [Min¥] 6.927 0.585 0.843 2.333 0.673 1.787

5. 4. Minimization ofa-invariant and strain energy



Finally, we consider the following multiobjective optimization problem for minimizing the strain energy and sum of
a-invariants at the 15 points indicated by filled square in the Figure:

f(a) = 5d"Kd

mw-Zw

. S-So= 0
subject to .
r;—r,0=0 Point at whiche-invariants are measured
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(28)

To solve this problem using the constraint method for multiobjective programming, we convert the problem to the follow-
ing two single-objective optimization problems:

minimize f(q,)

S(g) —-So=0 (29)
subjectto ¢ ri(q,) - ro=0

9(a)-9g<0
minimize g(d,)

S(a) —So=0 (30)
subjectto ¢ ri(q,) - 10=0

f(gq)-f<0

whereg and f are the upper bounds of the sumainvariants and the strain energy, respectively. The Pareto optimal
solutions are found parametrically by solving Problem (29) for the region of large strain energy and Problem (30) for
the region of larger-invariants, where the upper bound are parametrically varied. Figure 8 shows Pareto front and
its mechanical properties, and Figures 9-11 show several Pareto optimal solutions with contour lines. The mechanical
guantities are also shown Table 2. As is seen from these figures, the shell surface approaches a sphericalgégsface as

is decreased. Although the shape of optimal solutionffer 1.0 is almost similar to the initial shape that has an almost
spherical surface, the fitiess of the optimal shape is much larger than that of the initial shape. This way, a mechanically
efficient surface consisting of truncated spherical surface can be generated by optimization.
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Figure 8 : Pareto front and its mechanical properties

Table 2 : Mechanical properties of several Pareto optimal solutions considenmariants and strain energy
g=002| f=076| f=100 Initial
(Fig. 9) | (Fig. 10) | (Fig. 11) | (Fig. 2)

Strain energy [KNm] 0.672 0.760 1.000 5.733

Sum ofe invariants 0.020 [ 16x10° [ 45x10° | 29x10°
Max. vertical disp. [mm] 3.419 3.783 11.99 59.88
Max. compressive stress [iin¥] 2.593 2.661 2.986 3.600
Max. tensile stress [Mnv] 0.118 0.041 0.145 0.917

Max. bending stress [Min¥] 0.611 0.404 1.367 6.927
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6. Bézier surface with irregular plan

So far, we considered a surface with regular triangular plan. In this section, optimal shapes are found for the shell surface
with irregular plan (Model 2) as shown in Figure 12, in order to demonstrateffaetigeness of using the triangular

Bézier patch. The geometry of the control net is also shown in Figure 12. The rise is 8.0 m, and other parameters are the
same as those of Model 1 in Sec. 5. The surface is modeled using ten triangzier Eatches of order 4, and the design
variables are the z-coordinategg of 52 control points as shown in the filled circle in Figure 12, where the symmetry
conditions are utilized and the locations of supports are fixed. The structural analysis is carried out considering symmetry
conditions. The continuity of gradient and curvature along the interior boundary betveazer Batches is not necessarily
satisfied.

@ Fixed support

(a) plan and diagonal view

(b) Bézier patch and control points

Figure 12 : Shell surface with triangular plan (Model 2)

6. 1. Minimization of strain energy without constraints on algebraic invariants



We first find the optimal shape without constraint on an algebraic invariant. The following optimization problem is same
as Problem (25):

minimize f(q,) = %dTKd
subjectto S(g,) —So=0

(1)

The initial and optimal shapes are shown in Figures 13 and 14, respectively. The mechanical quantities are also shown
in the second and third columns of Table 3. It can be confirmed from the optimization results that the bending and
tensile stresses are reduced and the shape is optimized so that the shell resists the self-weight mainly with compression
in the similar manner as Model 1. However, the optimal shape depends on the load patters; therefore, multiple loading
conditions should be considered for practical application. Note that the gradients are not continuous along the internal
boundaries between theeBier patches of the optimal shape. Globally smooth surface can be generated, if necessary, by
assigning constraints on continuity of tangent vectdr¢@ntinuity) between two adjacent patches [14].

VAVAVAY VAN VAVAV.AY.
\VAVAVAVAVAVAVAVAVAVAVAVAVAV
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAS

Figure 13 : Initial Shape of Model 1 Figure 14 : Optimal shape of Problem (25)

6. 2. Minimization of strain energy under developability constraint
Next, we generate a developable surface by shape optimization. The following problem is to be solvef,smthiahes
at 105 points indicated by the filled squares in the Figure:
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The optimal shape is shown in Figure. 15(a). Althoyglis not guaranteed to vanish at the point where the constraint is

not given, the contour lines became almost straight and parallel as shown in Figure 15(b), Hence, eag¢b phitie df

the shell is nearly developable. Furthermore, both of the strain energy and maximum vertical displacement have smaller
values than the initial shape as shown in the last column of Table 3. Note that a developable surface cannot be generated
if continuity of gradient is assigned along the internal boundaries.

0

(b) contour line of vertical coordinates

(a) elevation and diagonal view
Figure 15 : Optimal shape of Problem (25)



Table 3 : Mechanical properties of initial and optimal solutions

Initial Without invariants| With developability condition
(Fig. 13) (Fig. 14) (Fig. 15)
Strain energy [kNm] 26.27 5.475 5.685
Max. vertical disp. [mm] 47.10 3.719 4.683
Max. compressive stress [nr] 16.22 8.266 8.500
Max. tensile stress [Min¥] 3.543 0.299 0.311
Max. bending stress [Mn¥] 9.941 0.420 0.584

7. Conclusions
The local properties of the shell surface can be explicitly controlled by solving an optimization problem with constraints on
the algebraic invariants of the surface. Nonlinear programming caffibeetly used because the sensitivity fiments
of invariants with respect to the locations of control points are explicitly derived. Furthermore, a developable surface can
be obtained by assigning the constraint such that the Gaussian curvature vanishes everywhere on the surface.ffThe trade-o
relation between roundness andisgss of the shell has been investigated using the constraint approach of multiobjective
programming.

Hence, it may be concluded that the algebraic invariants féeet&e indices representing the local properties of the
surface, and the optimal shell shape considering the aesthetic aspects, constructability and mechanical rationality can be
generated using the proposed approach at the early design stage.
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