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Abstract  

Shape optimization of the long-span translational free-form shell roofs subjected to strong wind is carried out to 

minimize the maximum vertical displacement. The three-dimensional (3D) fluid flow analysis is performed to obtain 

the highly precise dynamic wind load. To reduce large computational cost of the 3D analysis, the multigrid method is 

employed to solve the pressure Poisson equation. The objective function of this optimization problem is expected to 

have strong nonlinearity. By using Response Surface Model (RSM), the objective function is approximated as a smooth 

function so that computational cost for optimization is reduced. Analyses at several experiment points are required to 

generate the RSM. It is not practical to perform 3D analyses at all experiment points due to huge computational cost. In 

order to further reduce the computational cost of the 3D fluid flow analysis, the Variable Complexity Model (VCM), 

which combines high-fidelity and low-fidelity models, is used for generating the RSM. Accuracy of the results obtained 

by the RSM generated by the VCM is verified in comparison to those obtained by the RSM generated by the 3D 

analyses. The numerical results show that the computational cost for shape optimization can be drastically reduced with 

slight error of the objective function by using the VCM. 
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1. Introduction 

Long-span shell roofs are traditionally used for covering large space for arenas, gymnasiums, and so on. Recently, due 

to the demand for less constructional cost and period, lightweight structures such as membrane structures and spatial 

frames are preferred to concrete shells. It is important to consider influence of wind action for designing a lightweight 

space frame structure. In the field of architectural engineering, wind pressure characteristics of structures are 

investigated by the wind tunnel or computational fluid dynamics simulations. Although long-span spatial structures 

should be designed mainly against seismic loads, wind loads are likely to be critical to the lightweight spatial structures 

due to the lack of out-of-plane stiffness. Since wind load strongly depends on a shape of the structure, the responses to 

the wind are possible to be reduced by finding the optimal shape. Therefore, shape optimization of such a structure in 

the strong wind is very effectively applied to practical wind-resistance design.  

In order to obtain highly precise dynamic wind load, the three-dimensional finite element analysis of fluid flow 

(hereafter referred to as 3D fluid flow analysis) is a reliable method. For this analysis, however, a huge computational 

cost is involved in solving the pressure Poisson equation. The conjugate gradient method (CG method) is commonly used 

for a large-scale linear problem, though the convergence rate is not high enough. By using the multigrid method (MG 

method) as a preconditioner of the CG method, the computational time of the pressure Poisson equation can be reduced. 

The authors[1] have improved the computational efficiency of 3D fluid flow analyses around shell structures by applying 

the MG method in which the 2D mesh is used as a coarse mesh.  

It is not easy to solve a multimodal optimization problem based on a sensitivity analysis. Response Surface Model 

(RSM) is an effective method for such problem because the sensitivity analysis can be easily carried out. RMS is generated 

by using responses from experiments or analyses, and approximates the objective function. Responses at enough data 

points are required to approximate the objective function accurately. Thus, it takes enormous computational time to carry 

out costly analyses such as 3D fluid flow analyses repeatedly for generating RSM. The Variable Complexity Model 

(VCM), which estimates the responses of a complex high-fidelity model from the responses of an approximate 

low-fidelity model, can be effectively used to reduce the computational cost in the preliminary optimization process 

[2-4]. 

In this study, a fast solution method is proposed for the shape optimization of the translational free-form shell roofs 



 
 

for minimizing the maximum vertical displacement against wind loads. In this method, the MG method is applied to the 

3D fluid flow analyses and approximate objective functions are found by the RSM, where the responses at each 

experiment point are computed by the VCM. The accuracy of optimal solution and the improvement in computational 

efficiency by the VCM is verified in comparison to results obtained by the RSM generated by the 3D analyses only. 

 

2. Response Analysis of Shell Roofs Subjected to Strong Wind 

 

2.1. Analytical Model 

Consider the long-span translational free-form shell roof subjected to strong wind, as shown in Fig. 1. Bézier curves are 

utilized to define the shape of the analytical model. Let    
q
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the -th order Bézier curve on the x-z 

plain and expressed by Eq. (1) 
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where  Ri = (Rix ,Ri
y )  is a position vector of a control point, Bi (i = 0,..., )  is an -th Bernstein basis function, and s 

(0   s 1) is a parameter. The roof shape is defined by q(s) = (qx0 (s) y qz0 (s)) . Here, let the order of  be equal to five 

so as to express a moderate curve shape. The fifth Bézier curve is shown in Fig. 2. It is generated by determining 

positions of six control points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The x-z section of the mesh at y = 0 is illustrated in Fig. 3. The space around the structure is discretized by the finite 

element method. Linear triangular and tetrahedral elements are used for the 2D and 3D models, respectively. The 3D mesh 

is generated by dividing each triangular prism, which is generated by extruding a triangle in the y-direction, into six 

tetrahedrons. The boundary conditions are shown in Table 1. Let u, v, and w denote the wind velocity in the x-, y-, and 

z-directions, respectively. The velocity u at the inlet boundary has a uniform value of VH. The turbulent velocity fluctuation, 

which is stochastically simulated by reflecting the characteristics of the turbulence in the wind tunnel flow, is imposed only 

in the x-direction. The condition p = 0 is given at the outlet boundary in order to prevent singularity of the pressure Poisson 

equations. In order to prevent a reverse current at the outlet boundary, the viscosity μ is set higher in the domain between x 

= 17.5D and 20.0D. The parameters of air are shown in Table 2. The increment of non-dimensional time t* (= tVH/D) is 

0.01. The wind engineering targets the Reynolds number approximately ranging from 7.0 10
4
 to 7.0 10

8
. In this study, the 

value 1.0 10
5
 within the semi-critical territory is utilized as a Reynolds number.  
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Figure 2. 5th Bézier curve (initial shape) 

 

 
Figure 1. Analytical model 
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Figure 3. Mesh discretization of space
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Table 3. Model parameter 

 

 

Model parameters are shown in Table 3. The parameters of the analytical model are determined so that the values 

of mass parameter CM and load parameter CL correspond to those of the realistic model. CM and CL are expressed by Eqs. 

(2) and (3), respectively. 

 

 

 

where QH is velocity pressure at the reference point. 

 

2.2. Method of Analysis 

Outline of 3D fluid flow analysis is explained as below. The governing equations in the present study are the filtered 

Navier-Stokes equation and the continuity equation. The Navier-Stokes equation discretized in time domain by the 

Crank-Nicolson method and the continuity equation are expressed by Eqs. (4) and (5), respectively. 

 

(4) 

 

 

(5) 

 

where u ; velocity, p ; pressure,  (          )  space average, d ; spatial dimension, t ; time increment,  (=μ/ air) ; molecule 

viscosity coefficient, SGS ; eddy viscosity coefficient, and uin+1/2 = (uin + uin+1) / 2  . The superscript n denotes the value at 

the n-th time-step. The subscripts 1, 2 and 3 denote the x-, y-, and z-components, respectively. The standard 

Smagorinsky model is employed as an eddy viscosity model with the model coefficient of 0.1. 

The discretized Navier-Stokes equation and the pressure Poisson equation are introduced by the improved balancing 

tensor diffusion method and the fractional step method (IBTD + FS method) combined with the finite element method. 

In this scheme, equal-order interpolation elements are used for velocity and pressure. The pressure Poisson equation is 

represented as a large-scale system of linear equations having dimensions that are equal to the number of nodes on the 

mesh. It was confirmed that the simulated results obtained by the present method agree well with the experimentally 

obtained results from a wind tunnel test [5].  

 Response analyses are conducted only for the shell roofs assuming that the walls are considered to be rigid. The 

edge of the roof and the wall are connected with pin-joint. Roofs are idealized as a 2D model with 49 nodes and 48 

linear beam elements on assumption that the roof unlimitedly expands in the y-direction. As a solution method of the 

motion equation, Newtmark-  method (  = 0.25) is employed. The damping matrix is introduced using Eq. (6) 

 

 

where U is a mode matrix and sC is an s-th generalized damping coefficient which is determined by the s-th damping 

factor. The damping factors of the first and second mode are set to 2%, and those of more than third modes are set to 

20%. The average pressure along the y-direction at each time step is used as dynamic input load, where fluid-structure 

interaction is not considered. 
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Table1. Boundary condition 

Inlet Outlet 
Structure surface, 

Under surface 

Upper 

surface 

Side 

surface 

u=VH, v=0, w=0 p=0 u=0, v=0, w=0 w=0 v=0 

Table 2. Parameter of fluid 

 

Average wind velocity  
at the inlet boundary  VH (m/sec) 

14.5 

Density of air  air (kg/m
3
) 1.25 

Coefficient of viscosity  μ (N sec/m
2
) 1.81 10

-5
 

Reynolds number Re (= UHD/μ) 1.0 10
5
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2.3. Application of Multigrid Method 

For a 3D fluid flow analysis, a huge computational cost is involved in solving the pressure Poisson equation. In this 

study, the convergence rate of the solution is improved by employing the MG method as a preconditioner of the CG 

method. The algorithm of the preconditioned CG method (PCG method) is shown in Fig. 4. The PCG method is used 

to solve the pressure Poisson equation Ax=b. The MG method is utilized for e =MMG
1 d  (the subscript i is omitted). The 

outline of the MG method is shown in Fig. 5. The 2D mesh is used as a coarse mesh. This procedure can be divided into 

three parts. (I) restriction : mapping the residual d of the fine mesh on the coarse mesh by averaging the residuals of the 

nodes aligned in the y-direction. (II) computing the solution on the coarse mesh ecoarse by solving the equation 

Acoarseecoarse= dcoarse .  (III) prolongation : mapping the solution ecoarse on the fine mesh by distributing the value on the 

coarse mesh to the corresponding nodes on the fine mesh aligned in the y-direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Formulation of Shape Optimization Problem 

Shape optimization problem of the long-span translational free-form shell roof subjected to strong wind is formulated as 

follows: 

 

 

 

 

 

 

 

where w
max

 and w
min

 are maximum and minimum value of response displacement in the z-direction of all nodes, 

respectively. Buildings are generally designed so that maximum response does not exceed the allowable value. 

Therefore, the objective function is defined as Eq. (7). As shown in Fig. 2, the control points R0 and R5 are fixed at the 

tops of windward and leeward side walls, respectively. The z-coordinates of other control points are the design variables 

(Eq. (8)). The design variables R of the initial shape shown in Fig. 2 is (R1
z

R2
z

R3
z

R4
z )  = (0.35 0.4 0.4 0.35). Stiffness 

and weight of members are not included in design variable. Constraints are decided to avoid the shell roof from being 

low-rise (Eqs. (9) and (10)). However, constraint condition that the roof shape of the windward and leeward side 

becomes symmetric is not imposed because there are some cases in which the structure is subjected to prevailing wind. 

 

4. Optimization Method 

 

4.1. Response Surface Model 

The optimization problem in this study is assumed to be multi-peak problem because the objective function is the 

maximum response displacement to the dynamic wind load. Thus, in order to reduce the computational cost, RSM is 

employed as a meta-model so that the sensitivity analysis can be easily conducted. Optimal solution for the objective 

function generated by the RSM is obtained by using the optimization algorithm called the sequential quadratic 
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Figure 4. Algorithm of the PCG method Figure 5. Outline of the MG method 
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programming provided by the software package DOT Ver. 5.0 [6]. The objective function is approximated by complete 

quadratic function of the vector r={ri}( 1 ri 1) as 

 

(11) 

 

where N is the number of design variables. Relation of the vector r and the design variable R is expressed by Eq. (12) 

 

 

where R
(k)

 is optimal solution after k-th step of optimization and an initial value of the next step. The initial value with 

k=0 is design variables at the initial shape. R is a move limit. a0, ai and aij are the coefficients that are to be determined 

from the least square method for the responses at the selected data (experiment) points. The number nc of unknown 

coefficients ai, and aij in Eq. (11) has to be 15 or above because nc= (N+1)(N+2)/2 and N is four in this study. In order to 

obtain accurate results, 30 experiment points are generated by the function ‘cordexch’ in the statistics toolbox of Matlab 

that generates 3-level approximation for D-optimality [7] ; i.e., ri takes one of the values from { 1,0,1}. The origin 

(0,0,0) is added and total data points become 31. Optimization flow is summarized as 

1) Assign initial design variable vector R
(0)

 and the move limit R .Set k = 0 

2) Generate experiment points by using R
(k)

 and R. 

3) Compute values of the objective function f in Eq. (7) at each experiment point. 

4) Generate RSM in Eq. (11) by using the values of f computed in 3) 

5) Find the optimal solution of RSM and compute R
(k +1) 

from Eq. (12). 

6) Let k  k+1 and update R. If not converged go to 2) 

Optimal solution may oscillate if the value of R is large. On the contrary, if the value of R is small, the number of 

optimization steps may increase or this algorithm may get stuck in a local minimum. Taking it into consideration, we 

have to replace R successively.  

 

4.2. Variable Complexity Model 

It takes huge computational time to conduct the 3D fluid flow analysis repeatedly for the procedure 3) of optimization 

flow explained in section 4.1. In order to reduce the computational cost, the VCM method, which is the approximate 

optimization method by using the high-fidelity model and low-fidelity model, is employed. In this study, for the 

high-fidelity model, the 3D fluid flow analysis is used for computing the wind load. On the other hand, for the 

low-fidelity model, the 2D fluid flow analysis is used. Hereinafter the analysis for the high-fidelity model and the 

low-fidelity model are called 3D analysis and 2D analysis, respectively.  

The Fourier transformation of the time-history response i(t) at node i (i = 1, … , 47) except the both ends is denoted 

by i (R)  as a function of R. The Fourier spectra from 2D and 3D analyses are denoted by i
2D and i

3D , respectively. 

The VCM factor i (R
(k)

) for design variable is given as follows: 

 

 

The Fourier spectrum is approximated by using the VCM factor i (R
(k)

) as follows: 

 

 

The procedure 3) of the optimization flow described in section4.1 is modified by applying the VCM as follows: 

3)-1 Conduct both 2D and 3D analyses at initial experiment point R
(k)

 and compute the VCM factor i (R
(k)

) from Eq. 

(13). 

3)-2 Compute i
2D(R(k )

+ Rr)  by conducting the 2D analyses at each experiment point and estimate i
3D(R(k )

+ Rr)  
from Eq.(14) by using the VCM factor i (R

(k)
). 

3)-3 Compute the time-history responses at all nodes of the shell roof by inverse Fourier transform of i
3D(R(k )

+ Rr)  
and obtain objective values at each experiment point. 

The 2D mesh used for the VCM is the same as that used as the coarse mesh in the MG method, and the same 

program can be used in solving the 2D pressure Poisson equation. Thus, the method using both the MG method and the 

VCM has the advantage of implementation.  

As the VCM factor, in addition to the difference model defined by Eq. (13), the ratio model used in reference [3] 

can be chosen. Then, the accuracies of the difference model and ratio model are compared.  The difference in the 

response between the difference model and ratio model are shown in Fig. 6. Note that in Fig. 6, differences are divided 

by the average f3D of the responses at 31 experiment points. Responses in (a) and (b) are computed at the experiment 

points, which are generated by using initial value and R of STEP1 and STEP6 listed later in Tables 5 and 6, 

respectively. In STEP1, the accuracy of the difference model is high. On the other hand, the accuracy of the ratio model 

is not sufficiently high at several points. In STEP6, both accuracies are worse than STEP1, however, the accuracy of the 
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difference model does not deteriorate remarkably. For this reason, the difference model is rational and thus is employed 

in this study as the VCM factor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Difference in response between difference model and ratio model  

 

5. Result of Numerical Analysis 

Shape optimization of the translational free-form shell is conducted by applying the MG method described in section2.3. 

Hereinafter the case in which the RSM is generated by the VCM is called R-VCM and the case in which the 3D 

analyses are conducted at all experiment points is called R-3D. A total of 1024 data of the time-history responses are 

sampled from 2885th to 8000th step at every five time steps. For computation, TSUBAME Grid Cluster of Tokyo 

Institute of Technology Global Scientific Information and Computing Center is utilized. One node has eight dual-core 

AMD Opteron 880 processors running at 2.4GHz and 32GB of memory. The computational time as shown later in 

section 5.1 is measured in the occupied node.  

 

5.1. Computational Time 

For one optimization step, computational time is occupied mostly by the fluid flow analyses. In R-VCM, 2D and 3D 

analyses are carried out 31 times and once, respectively, while, in R-3D, 3D analyses are carried out 31 times. At the 

first optimization step, in order to examine the effect of the VCM, the computational time taken for the 2D analyses at 

31 experiment points and the 3D analysis at the initial experiment point R
(0)

 are measured. Also, in order to examine the 

effect of the MG method, the computational time for the 3D analysis without the MG method is measured. These 

computational times are shown in Table 4. From Table 4, it is found that, without the MG method, it takes 

approximately 17 hours to generate the RSM in R-VCM, and approximately 387.5 hours in R-3D. Therefore, the 

computation for the optimization problem in R-VCM becomes 22.8 times faster than R-3D. Note that, in R-3D, the 

computational time to generate RSM is estimated by multiplying the computational time taken for the 3D analysis at 

initial experiment point R
(0)

 by 31, which is the number of experiment points. In R-VCM combined with the MG 

method, computational time to generate the RSM is approximately 10.3 hours. It is reduced to approximately 61%. On 

the other hand, in the R-3D, by using the MG method, computational time is reduced to approximately 46%. Hence, the 

computation of the optimization problem becomes far more faster by using the MG method together with the VCM.  

 

Table 4. Computational time for 2D and 3D analyses (first optimization step) 

 

2D analyses at 31 experiment points (hour) 4.5 

3D analysis at initial experiment point R
(0)

 without the MG method (hour) 12.5 

3D analysis at initial experiment point R
(0)

 with the MG method (hour) 5.8 

 

5.2. Result of Optimization 

The optimization histories of R-3D and R-VCM are shown in Tables 5 and 6, respectively. The second rows in the 

Tables 5 and 6 indicate the initial design value R
(0)

 and the objective value f of R
(0)

. At STEP1, R
(0)

 is assigned as an 

initial value and the move limit R is set to be 0.05, and then the optimal solution is obtained. After STEP1, optimal 

solution of the former optimization step is assigned as an initial value of the next optimization step, and the move limit  

R is decrease by half for every two steps. The objective value f of the optimal solution did not oscillate but decreased 

in the early stage. Therefore, the setting of R is considered to be appropriate. fRS and f are the objective value of 

optimal solution computed by using the RSM and the 3D analysis, respectively. Compared to f, the error of fRS is found 

to be small except STEP5 of R-3D.  
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         Table 5. Optimization history of R-3D                                   Table 6. Optimization history of R-VCM 

 

 

 

 

 

 

 

 

 

 

 

The change of the objective value f of the optimal solution is shown in Fig. 7. The changes of f in both R-3D and 

R-VCM are similar. The results at STEP6 and STEP5 are considered as the optimal solution of the optimization problem in 

R-3D and R-VCM, respectively. Finally, The objective values in R-3D and R-VCM largely decrease to approximately 

11.0% and 15.5% of the initial one, respectively. Thus, the optimization results in both R-3D and R-VCM are useful. 

  

 

 

 

 

 

 

 

 

Figure 7. Change of objective value f of optimal solution 

 

To verify the reliability of the optimal solution, the accuracy of the RSM is confirmed by the analysis of variance. 

The analysis variance is used to linear regression model. Thus, each ri, rirj (i  j=1,2,3,4) in Eq. (11) is considered as an 
independent variable, and the RSM is treated as a linear multi-regression model. The number of the independent variables 
amounts to 14. The ratio of variance at each optimization step is shown in Fig. 8. Here, A variance ratio F0 of the vertical 
axis is expressed in Eq. (15)  

(15) 

 

where SR is the sum of square of the regression model, SE is that of the error, n is the number of the data points and p is 

the number of the independent design variables. F0 indicates how accurately the multi-regression model explains the 

actual data. F(0.05,14,16) is the value of the F-distribution where significance level is 0.05, p=14 and n p 1=16. When 

the variant ratio F0 exceeds F(0.05,14,16), this multi-regression model is statistically significant at 95% level of 

confidence. In this model, RSM expressed by a complete quadratic equation can explain the real objective function 

sufficiently except the STEP5 of the optimization, and thus the optimal solution obtained by using this model is reliable. 

In order to understand how the optimal solution depends on update rule of R at each optimization step, 

optimizations in these three cases are carried out : the rule employed in Tables 5 and 6 is used in CASE1, the rule with 

small R is used in CASE2 and the rule with large R is used in CASE3. The influences of the update rule of R on 

objective values f of optimal solution in R-3D and R-VCM are shown in Figs. 9 (a) and (b), respectively. These changes 

are almost the same and the optimal solution is not sensitive to R within a range examined here. Therefore, R 

employed in this example is appropriate. 

 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 8. Variance ratio F0                    Figure 9. Influence of update rule of R on objective values f 
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5.3. Verification of Optimal Solution 

The initial and optimal shapes in R-VCM and R-3D are shown in Fig. 10 and these curvatures are shown in Fig. 11. The 

x-coordinates and z-coordinates are non-dimensionized dividing by the dome span D in Figs. 10 to 14 (except Fig. 12). 

The optimal shapes are lower than the initial one in the windward and leeward parts. The rise of the optimal shape in 

R-3D is lower than that in R-VCM. For the control points of the optimal shape, R1 and R4 are located over those of 

initial shape, whereas R2 and R3 are under the those of initial shape. Distribution of these control points makes the 

curvature of the optimal shape almost uniform and the optimal shape close to a cylinder. 

 

 

 

 

 

 

 

 

 

 

 

           Figure 10. Initial shape and                                                          Figure. 11. Curvature of initial shape and 

                            optimal shapes in R-VCM and R-3D                                             optimal shapes in R-VCM and R-3D 

 

 The pressure contours are shown in Fig. 12 at non-dimensional time tVH/D = 60. Pressure data from Figs.12 to 14 

are averaged values of the data aligned in the y-direction. The difference in pressure contour between the initial and 

optimal shape is that the isobar of the initial shape is denser than that of the optimal shape around the edge of the 

windward roof surface. There is no definite difference in pressure contour between R-3D and R-VCM for the optimal 

shape. The same results are observed at the non-dimensional times 20, 40 and 80. The mean wind pressure coefficient 

Cp  and fluctuating wind pressure coefficient Cp  on the roof surface are shown in Figs. 13 and 14, respectively. The 

pressure data from 2000th to 8000th time step are sampled to compute the wind pressure coefficients. The gradient of 

Cp for the optimal shape is shallower than that for the initial one on the windward side because the isobars of the 

optimal shape are sparser than the initial one around there. The peak values of Cp for the optimal and initial shape are 

almost the same, however, the peak for the optimal shape is located nearer to the center of the roof. The fluctuating 

wind pressure Cp for the initial shape is larger than the optimal one on the windward side around which the isobars of 

the initial shape are denser. There is no definite difference in Cp  and Cp  between R-3D and R-VCM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusions 

Shape optimization of the long-span translational free-form shell subjected to strong wind has been carried out for 

minimizing the maximum vertical response displacement among all nodes. In the proposed method, to improve 
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Figure 12. Pressure contour (tVH/D = 60) 

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

-0.50 -0.25 0.0 0.25 0.50

initial shape

optimal shape (R-VCM)

optimal shape (R-3D)

Cp

x/D

 
 

Figure 13. Mean pressure coefficient Cp  
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Figure 14. Fluctuating pressure coefficient Cp  
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computational efficiency for the shape optimization problem, the multigrid method (MG method) is employed to the 

three dimensional fluid flow analyses. The Variable Complexity Model (VCM) is also employed to generate the 

Response Surface Model(RSM). The effects of the MG method and the VCM on the computational efficiency are 

examined. The conclusions obtained from this study are shown as follows: 

1) As a model of the VCM factor, the model defined by the difference of the high-fidelity model and the low-fidelity 

model is appropriate compared to that defined by the ratio. 

2) Computation for the optimization in the case that the RSM is generated by the VCM (R-VCM) is approximately 

22.8 times faster than in the case that the RSM is generated by the three-dimensional fluid flow analyses (R-3D) 

only. In addition, computational times for the optimization in R-VCM and R-3D are decreased largely by applying 

the MG method, that is, they are reduced to approximately 61% and 46%, respectively. 

3) Objective values of the optimal solution in R-VCM and in R-3D are approximately 15.5 % and 11.0% of the initial 

one, respectively. Hence, both methods are useful for the optimization. 

4) The optimal shape has uniform curvature; that is, the shape is close to cylinder. 

5) The gradient of mean wind pressure coefficient Cp  for the optimal shape is shallower than that for the initial one. 

The peak value of Cp  for the optimal shape is almost equal to that for the initial one. However, the peak for the 

optimal shape is located nearer to the center of the roof compared to the initial one. On the other hand, any peak of 

the fluctuating wind pressure coefficient Cp  is not observed for the optimal shape, whereas a peak is observed for 

the initial shape on the windward side of the roof. 
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