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Abstract
A method is presented for shape optimization of clamping members under stress constraints. The cross-section of member
is modeled and discretized by plane-strain two-dimensional finite elements. The cross-section has specified topology with
fixed number of holes. The shapes of exterior boundary and holes are described by line segments and spline curves.
The design variables are the locations of control points, and the objective function is the total structural volume that is
to be minimized. Constraints are given for the von Mises equivalent stresses of each element, where the stresses due
to bending of the members are added. In order to reduce the number of constraints, the maximum stress among all the
elements is approximated by thep-norm. A general purpose finite element solver called ABAQUS is used for analysis,
and a nonlinear programming library called SNOPT [4] is used for optimization. For this purpose, an interface program is
developed using a script language called Python. It is shown in the numerical examples that the total volume is effectively
decreased by using the proposed method. The validity of two-dimensional model is also investigated through analysis of
the three-dimensional model.
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1. Introduction
In the field of architectural engineering, PTFE-coated glass fiber fabric, which is simply called membrane material, is
widely used for lightweight roofs of long-span structures such as domes, stadiums, and gymnasiums. Since membrane
materials can transmit only in-plane tensile forces, a membrane roof is stabilized and shaped into three-dimensional
curved surface by pre-tensioning. A membrane roof is generally connected to boundary steel frames with clamping
members called fasteners, which are usually made of aluminum alloy manufactured by extrusion molding. Since such
aluminum clamping members are mass-products, total production cost of a membrane roof can be significantly reduced
by optimizing the cross-sectional shape and topology of those members.

It is known that the shape and topology of a continuum can be effectively optimized using the well-developed meth-
ods such as solid isotropic material with penalization (SIMP) approach, homogenization method, and level-set approach.
However, most of the practical applications are concerned with global structural performances such as compliance and
eigenvalues of vibration. Therefore, optimization under local stress constraints is still difficult for large complex contin-
uum structures. The third author presented a method to find shapes of beam flanges for maximizing the plastic energy
dissipation under cyclic deformation [1, 2] as a first attempt of optimizing performances of mass-produced structural parts
in the field of civil and architectural engineering.

In this study, we present a method for shape optimization of clamping members under constraints on von Mises
equivalent stress. The cross-section of center span of the member supported by two bolts is discretized by two-dimensional
finite elements with plane strains. The cross-section has specified topology with a hole. The shapes of boundary and hole
are represented by line segments and spline curves. The design variables are the locations of control points. The objective
function is the total structural volume that is to be minimized. The stresses due to bending moment under distributed
membrane tensile force are added for evaluating the equivalent stress. In order to reduce the number of constraints, the
maximum stress among all the elements is approximated by thep-norm.

A general purpose finite element solver called ABAQUS [3] is used for analysis, and a nonlinear programming library
called SNOPT is used for optimization. Two programs are connected by an interface developed using a script language
called Python. From the results of numerical examples, it is shown that the total volume is effectively decreased by using
the proposed method. The validity of two-dimensional model is also verified through analysis of the three-dimensional
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Figure 1. Clamping a membrane to a steel frame.
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Figure 2. Section of clamping member.

model.

2. Optimization problem
Optimal shape is found for the clamping member as shown in Fig. 1. Since it is difficult to optimize the clamping using
three-dimensional analysis, the clamping is first modeled as a two-dimensional finite element model and optimized, and
three-dimensional analysis is carried out for additional modification of the sectional shape. The clamping member is sub-
jected to the tensile force of membrane, and supported by two bolts at the ends of the clamping member. Therefore, based
on symmetry of the structure, boundary condition, and loading condition, one of the half parts is optimized. Moreover,
we first assume that the bolt is distributed throughout the clamping, and optimize the section supported by a bolt as shown
in Fig. 2, where the boundary 1, and the boundaries 2 and 3 are supported by pin and horizontal (x-directional) roller,
respectively. The tensile force of membrane is transmitted to the clamping through the contact between clamping and
rope. We assume the frictionless contact between the rope and clamping.

The shapes of boundary and hole are defined using spline curves and line segments. LetX denote the vector of
variable locations of the control points indicated by circles in Fig. 2. The variables are vertical coordinates of the two
control points at the extenral boundary, and horizontal and vertical locations of the six control points at the boundary of
hole; therefore, we have 14 variable components inX. The upper and lower bounds for the components ofX are given as
±2 mm of the initial locations in Fig. 2.

The tensile force of the membrane material is defined as the loadP as shown in Fig. 2.
The optimal shape is found for minimizing the total structural volumeV(X) under stress constraints. Let ¯σ denote

the upper bound for the maximum valueσmax(X) of the von Mises equivalent stresses among those evaluated at all the
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Figure 3. Stress distribution of initial shape utilizing contact.

integration points of all the elements. Then, the optimization problem for minimizing the total structural volumeV(X) is
formulated as

Minimize V(X) (1)

subject toσmax(X) ≤ σ̄ (2)

XL ≤ X ≤ XU (3)

whereXU andXL are the upper and lower bounds forX.
The quadrilateral plane-strain element CPE4R with reduced integration is used for discretization of the section of

clamping, bolt and rope. The thickness of plate is 1 mm, and the FE-mesh is automatically generated with the nominal
length 1 mm; hence, the numbers of elements and degrees of freedom are 2119 and 4648, respectively. Analysis is carried
out using a finite-emenent analysis software called ABAQUS Ver 6.5.3 [3].

The material of the clamping member is an elastic aluminuum alloy categorized as AS-type. Type AS210 with
nominal strength 210 N/mm2, elastic moduls 7.0 × 104 N/mm2, and Poisson’s ratio 0.3 are used for optimization. The
elastic moduli of the bolt and rope are ten times and 1/10 as large as that of the clamping.

The membrane is assumed to be a PTFE-coated glass fiber fablic called FGT-800. The thickness is 0.80 mm, nominal
strength is 147.0 kN/m; hence, the distributed load applied to the rope is 73.5 kN/m, which is 1/2 of the nominal strength
of the membrane.

A nonlinear programming software package SNOPT Ver. 7.2 [4] is used for optimization in conjunction with the
analysis program package ABAQUS. The optimization algorithm is summarized as follows:

Step 1 Assign initial values for the design variables.

Step 2 Call a Python script from SNOPT to automatically generate FE-meshes and input file to ABAQUS, and execute
ABAQUS for structural analysis.

Step 3 Extract the equivalent stresses at the integration points from the output file of ABAQUS using a Python script.

Step 4 Compute the values of objective and constraint functions.

Step 5 Update design variables in accordance with the optimization algorithm of SNOPT.

Step 6 Go to Step 2 if not converged.

3. Optimization results
We optimize the model shown in Fig. 2. The stress distribution of initial shape is shown in Fig. 3. The maximum
equivalent stress is 81.55 N/mm2, which is observed at the element near node B. The total vertical contact force is 55.16
N, and the horizontal and vertical displacements (mm) at node B are 0.049 and 0.052, respectively.

The stress distribution of optimal shape is shown in Fig. 4, where the location of maximum stress that is different from
the initial solution is also indicated. The control points are located at the boundary of feasible regions. The values of the
objective functionV (mm3) excluding rope and bolt at initial and optimal solutions are 1237.3 and 965.4, respectively,
i.e., the structural volume is successfully reduced by optimization. The maximum stress (N/mm2) at initial and optimal
solutions are 81.55 and 117.0, respectively; therefore, the stress constraints are not active at initial and optimal solutions.
The deformation scaled by 20 is as shown in Fig. 5. The horizontal and vertical displacements at the node B increased
from 0.049 to 0.098 and 0.052 to 0.117, respectively, as the result of optimization. The vertical contact force decreases
from 55.16 to 52.5.
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Figure 4. Optimal shape and its stress distribution.
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Figure 5. Deformation scaled by 30; (a) initial, (b) optimal.

4. Optimization considering bending stress
In the previous example, the clamping member is supported by distributed bolts. However, in the parctical model, the
clamping is supported by two anchor bolts, and the bending stress has the maximum value at the center of the clamping.
Therefore, in this section, the bending stressσb due to the distributed load is added to the out-of-plane stressσzz of the
plate model to optimize the section at the center of clamping member as

σ′zz = σzz+ σb (4)

Then the equivalent stressσe is computed as

σe =

√
1
2
{(σxx − σyy)2 + (σyy − σ′zz)2 + (σ′zz− σxx)2 + 6σ2

xy} (5)

In Step 3 of the algoritm in Sec. 2, the equivalent stresses at the integration points as well as their coordinates and
covering areas are extracted from the output file of ABAQUS using a Python script. Then, the area and the second
moment of intertia of the section can be easily computed to find the bending stress at each integration point.

In the previous section, a constraint was given for the maximum value of the stress evaluated at all the integration
points. Since the point at which the stress takes the maximum value varies with the shape variation, the constraint is
nonsmooth with respect to the design variables. In order to reduce nonsmoothness of the constraint, we approximate the
maximum stress using thep-normσP for the two largest stressesσmax1 andσmax2 as [5]

σP = (σp
max1+ σ

p
max2)

1
p (6)

with p = 10 in the following example. Fig. 6 shows the distribution ofσp for p = 5 and 10, whenσmax1 andσmax2 varies
between 100 and 200.

The initial shape is as shown in Fig. 7, where the feasible regions of control points are also plotted. The radius of the
right boundary is also added to the variable; therefore, the number of variables is 5. The distance between the bolts is 500
mm. The parameterp for the stress constraint is 10; therefore,σP = 1.071σmax1 if σmax1 = σmax2. At the initial solution,
the maximum stress isσmax = 170.0 N/mm2, and its value after smoothing isσP = 182.2 N/mm2, i.e.,σP/σmax = 1.072,
which means thatσmax1 andσmax2 are almost the same. The total structural volume is 911.6 mm3, and the vertical contact
force is 54.7.

The optimal shape is plotted in Fig. 8. The initial and optimal locations as well as the upper and lower bounds for
the design variable are listed in Table 1. The total structural volume is 911.6 mm3, horizontal and vertical diplacements
at node B are 0.05 and 0.05, respectively, and the vertical contact force is 63.4. As is seen from Fig. 8, the width of the
section is increased around the point of maximum stress, and is reduced in the region of small stress near the bolt, as a
result of optimization. The width of circular part around the rope is also reduced.

The total structural volume decreased to 810.8 mm3, which is about 66 % of 1237.3 mm3 of the original shape. The
horizontal and vertical displacements (mm) at node B are 0.17 and 0.21, respectively, which are sufficiently small. The
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Figure 6. Smoothing usingp-norm.
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Figure 8. Optimal shape and its stress distribution.

maximum stress after smoothing isσP = 209.1 N/mm2, which is equal to the upper bound 210 N/mm2 with small
tolerance. The actual maximum stress is 196.4 N/mm2.

5. Three-dimensional analysis.
Three-dimensional analysis is carried out for the initial and optimal solutions. The model consists of the clamping mem-
ber, rope, and two bolts as shown in Figs. 9, 10, and Fig. 11, respectively. Some fillets are generated at the corners of
the boundary of the clamping to prevent stress concentration. The type of bolt is M16, and the contact area between the
clamping and bolt is 129.6 mm2 for each bolt. The material of bolt is steel with elastic modulus 2.05× 105 N/mm2 and
Poisson’s ratio 0.3. Other material parameters are same as the two-dimensional model.

The eight node hexagonal solid element C3D8R with linear interpolation and reduced integration is used. Automatic
mesh generation is used with the nominal size between 3 and 5 mm. The total structure without considering symmetry
condition is analyzed. The distance between the bolts is 450 mm. The clamping, rope and bolts are assembled as shown
in Fig. 12. The total numbers of elements and degrees of freedom are 23312 and 92952, respectively. All the translational
and rotational displacements are fixed at the ends of the bolts. Onlyz-directional displacements are fixed at the two ends
of the rope.

The stress distribution of the intial shape is shown in Fig. 13. The maximum stress of two-dimensional analysis
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Table 1. Initial valueX0, optimal valueXopt, lower boundXL , and upper boundXU of the design variables.

XL X0 XU Xopt

X1 11.00 13.00 15.00 11.24
X2 27.00 30.00 33.00 27.00
X3 54.57 58.57 62.57 58.87
X4 46.00 50.00 54.00 49.16
X5 27.00 31.00 33.00 27.00

is 137 N/mm2 that is observed at the element in the left end of the clamping member. The stresses in section A are
alsmost the same as those of two-dimensional analysis that includes the bending stress. As shown the section B in Fig. 13,
however, large stress is observed at the contact point between the clamping and bolt. Large stresses are also seen in
the bolts. Because bending deformation due to bending of the clamping is unreallystically constrained due to the fixed
supports, the large stresses at the contact point are occured. Therefore, the rotation around the support should be allowed.
The maximum stresses by two- and three-dimensional analyses are 137 N/mm2 and 106 N/mm2, respectively. The
x-directional displacement at the section A by three-dimensional analysis is about 1 mm.

Three-dimensional analysis is also carried out for the optimal shape in Fig. 14. The stress distribution is as shown in
Fig. 15. Thex-directional displacements in section A are about 1.5 mm. Similarly to the three-dimensional analysis for
the initial shape, the maximum stress at section B is seen at the contact point between clamping and bolt, and 358 N/mm2.
A stress about 300 N/mm2 that exceeds the upper bound 210 N/mm2 is also observed around the region S. The stress in
this region is about 180N/mm2 that is less than the upper bound.

We next investigate the applicability of plane strain element in the two-dimensional analysis. The stresses are com-
pared in section B that does not have bending moment. Table 2 shows the stress and strain components of element E
indicated in Fig. 15. As is seen, both of the out-of-plane stress and strain have nonzero values; therefore, the section
exhibits an intermediate deformation between plane stress and plane strain.

If plane stress and plane strain elements are used in the two-dimensional analysis, the equivalent stress after adding
bending stress are 250N/mm2 and 196N/mm2, respectively. Since the result by three-dimensional analysis is 186.3 N/mm2,
the plane strain element has better approximation.

Since it is difficult to optimize the clamping member using three-dimensional analysis, or accurately estimate the
stresses in region S, the clamping is first optimized using two-dimensional model, and the shape around region S may
be modified if necessary after three-dimensional analysis. The four points on the dotted line in Fig. 16 is moved to right
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Figure 9. Dimension of clamping member.

Figure 10. Dimension of anchor bolt. Figure 11. Dimension of rope.
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Figure 13. Stress distributions of section A,B ; three-dimensional models.

Table 2. Stress componentsσi j and strain componentsεi j of an element.

σi j N/mm2 εi j (×10−3)
σ11 0.6883 ε11 -0.004775
σ12 -1.6263 ε12 -0.060346
σ13 0.0670 ε13 0.002135
σ22 -0.3415 ε22 -0.023689
σ23 -4.5230 ε23 -0.168055
σ33 3.7269 ε33 0.051742

consecutively by 1 mm, and the stresses are evaluated.
The stresses after modification of 3 mm is shown in Fig. 17. The maximum stresses around right and left ends of

section A are 142.5 N/mm2 and 142.1 N/mm2, which are almost the same. The maximum stress excluding the contact
point in section B is 192.7 N/mm2, which is less than the upper bound. The total structural volume is increased by
81 mm3 as the result of modification; however, ther reduction rate from the original shape is 30 %.

6. Conclusion
Shape optimization has been carried out for clamping members of membrane structures. The total structural volume is
minimized under constraints on von Mises equivalent stress. It is shown that the total volume is effectively decreased
by proposed method. The cross-section of the clamping member is discretized by two-dimensional finite elements with
plane strains. The shapes of boundary and hole are represented by line segments and spline curves, and locations of some
control points are considered as design variables.

The stresses due to bending moment under distributed membrane tensile force are added for evaluating the equivalent
stress. The maximum stress among all the elements is approximated by thep-norm in order to reduce the number of
constraints and nonsmoothness of the constraint function. It has been shown in the numerical examples that the structural
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volume is successfully reduced by optimization.
Three-dimensional analysis is carried out for the initial and optimal solutions to verify applicability of two-dimensional

model for optimization. The clamping member, two bolts, and the rope are discretized by three-dimensional solid ele-
ments. It has been shown that the section of the clamping member exhibits an intermediate deformation between plane
stress and plane strain, and the plane strain element has better approximation of the three-dimensional analysis.

In the result of three dimensional analysis for the optimal shape, large stresses exceeding the admissible stress have
been observed. We have modified the optimal shape based on the three dimensional analysis, and shown that the shape,
which can satisfy the stress constrants and has sufficiently reduced structural volume, can be found by a small modification.
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