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1. Abstract
This paper discusses an optimization-based algorithm for the stability determination of a given equilib-
rium point of a statically-loaded finite-dimensional nonsmooth mechanical system with unilateral con-
straints. As for situations of unilateral constraints we focus on (i) cable structures, (ii) frictionless
contacts, and (iii) elastic-plastic structures. It is shown that the stability of a given equilibrium point
of such a mechanical system can be determined from the optimal value of a maximization problem of a
convex function over a convex set. We propose an algorithm for the stability determination problem, in
which second-order cone programming problems are solved sequentially.

2. Keywords: Second-order cone program; Nonsmooth mechanics; Stability analysis; Frictionless con-
tact; Unilateral constraint.

3. Introduction
In this paper we propose a numerical method for stability determination of a given equilibrium point
of a statically-loaded finite-dimensional mechanical system, when the displacements and/or stresses are
subjected to unilateral constraints. Since the stability of the static equilibrium point is an important
issue of nonlinear mechanics, various criteria on the stability of equilibrium points have been proposed
for elastic and inelastic structures [4, 23].

It is known that various classes of structural systems are governed by the unilateral constraints on
displacements and/or stresses; see, e.g. Duvaut and Lions [6]. This paper deals with the following
problems in nonsmooth mechanics that share the common mathematical framework:

(i) Structures including no-compression cables;

(ii) Frictionless contacts;

(iii) Elastic-plastic trusses with nonnegative hardening.

A cable member cannot transmit compressive force. This property is referred to as the stress unilateral
behavior , and was studied by Panagiotopoulos [17] by means of the variational inequality. Later, the
existence and uniqueness of static equilibrium solutions were investigated for cable networks in [3, 9, 27]
and for prestressed pin-jointed structural systems in [15, 16].

For frictionless contacts, numerical path-tracing methods still receive much attention [8, 26]. The
stability in frictionless contacts was investigated theoretically by Klarbring [12] and the references therein.
Tschöpe et al. [24] proposed a numerical method for finding limit points in frictionless contacts. We
attempt in this paper to determine the stability of an equilibrium point which is given a priori .

Elastic-plastic analysis can be regarded as a problem in which stresses are subjected to the unilateral
constraints [21], if infinitesimal displacements are considered. Hill [7] derived a sufficient condition for
stability of a given equilibrium point of elastic-plastic structures. For elastic-plastic problems, we restrict
ourselves to the directional stability of truss structures for simplicity.

This paper presents a numerical method to determine the stability of the given equilibrium point of
a structures subjected to unilateral constraints. It is emphasized that the method should be applicable
to large-scale problems, particularly, problems with a large number of unilateral constraints. We achieve
this aim by using numerical optimization. For frictional contact problems, a mathematical programming
approach was proposed to find the directionally unstable points by Pinto da Costa et al. [19], which is
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based on an enumeration of solutions to the complementarity problem. Casciaro and Mancusi [5] per-
formed the imperfection sensitivity analysis numerically by solving a nonconvex quadratic programming
problem.

We present a unified perspective, as well as general formulations, for the stability determination of the
structural systems (i)–(iii). For a given equilibrium point, we shall show that the (directional) stability of
mechanical systems belonging to these three classes can be determined by solving an optimization prob-
lem, specifically, the maximization problem of a convex quadratic function over a convex homogeneous
quadratic inequality and some linear inequalities.

We next propose a solution technique for the stability determination problem. Since the problem
is nonconvex, the conventional local method may converge to a local solution, which implies that the
stability cannot be determined correctly. On the other hand, any global optimization method seems to
be too expensive for mechanical engineers from the view point of computational cost. From a practical
point of view, it seems that a global optimization approach is not suitable for stability analysis. Hence,
in this paper, we choose a local method, which quite often converges to the global optimal solution.

We show that the stability determination problem presented can be embedded into the form of the
DC (difference of convex functions) program [2]. The DC algorithm was proposed as a local method
solving the DC programming problem, and has been examined by various kinds of DC programming
problems; see the review paper [2] and the references therein. It has been observed that the DC algorithm
quite often converges to global optimal solution, although the convergence to the global solution is
not guaranteed theoretically. Based on the DC algorithm we propose an algorithm for the stability
determination problem, At each iteration of which we solve a second-order cone programming (SOCP)
problem [1] by using the primal-dial interior-point method.

4. General framework for stability analysis

4.1. Stability criterion
Consider a finite-dimensional structure in two- or three-dimensional space. The structure is subjected
to static nodal loads. Let ξ0 ∈ Rk denote the vector of state variables describing the static equilibrium
point, which consists of the total nodal displacement vector and the generalized stress vector. Suppose
that we are given the equilibrium point ξ0 under the specified external load. Let nd denote the number
of degrees of freedom, and u ∈ Rnd

denotes the vector of infinitesimal incremental displacements from
the equilibrium point ξ0. We denote by A(ξ0) ⊆ Rnd

the set of all admissible incremental displacements
u satisfying the boundary conditions.

4.1.1. Stability condition for elastic structures
For elastic structures subjected to unilateral stress and/or displacement constraints, the total potential
energy Π(u) is defined for admissible incremental displacements vector u ∈ A(ξ0). By application of
Liapunov’s direct method [13], a sufficient condition of stability is given as follows.

Proposition 4.1. The equilibrium point ξ0 is stable if Π : u 7→ Π(u) is continuously differentiable at
any u ∈ A(ξ0) and if Π has an isolated minimum at u = 0.

Let K(u; ξ0) ∈ Snd
denote the tangential stiffness matrix, Snd

is the set of nd × nd real symmetric
matrices. We denote by v(u) the (twice of) second-order term of the increment of the potential energy
corresponding to u at ξ0, which is given by

v(u) = uTK(u, ξ0)u. (1)

Define v∗ ∈ R by

v∗ := min
u

{
v(u) : u ∈ A(ξ0), ‖u‖ = 1

}
, (2)

where ‖u‖ = (uTu)1/2. Since the stability can be determined only by the sign of v∗, we impose the
normalization condition on u in (2) without loss of generality.

The sufficient conditions for stability and instability are then given as follows.

Proposition 4.2. The equilibrium point ξ0 is stable (resp. unstable) if v∗ > 0 (resp. v∗ < 0).

Note that Proposition 4.2 gives a stability criterion for frictionless contact problems (see, e.g., [11] for
more details) and elastic structures including no-compression cables.
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4.1.2. Stability condition for elastic-plastic structures
Since the total potential energy cannot be defined for elastic-plastic structures, we employ the notion of
directional instability [4] which is defined by using v∗ as follows.

Definition 4.3. The equilibrium point ξ0 is said to be directionally stable (resp. directionally unstable)
if v∗ > 0 (resp. v∗ < 0). The equilibrium point is unstable if it is directionally unstable.

Note that the directional stability is a necessary condition for the stability of an elastic-plastic struc-
ture [4]. However, we restrict ourselves to the directional stability of elastic-plastic structure. In the
remainder of the paper, we omit the term directional as far as no confusion is possible.

4.1.3. Stability determination problem
It follows from sections 4.1.1 and 4.1.2 that the stability of both elastic and elastic-plastic systems are
determined by finding a global optimal solution of the problem (2). We focus on a case in which the
matrix K(u; ξ0) is indefinite, even for the fixed u.

4.2. Reduction to feasibility problem
In sections 5–7, we show that v∗ defined by (2) can be obtained as the optimal value of an optimization
problem in the form of

v∗ = min
u,z

{
uTQ0u+ zTQ1z : (u, z) ∈ F , ‖u‖2 = 1

}
. (3)

See Proposition 5.2 and the problem (30) for the detail of each specific problem. Note that Q0 ∈ Sn
d

and
Q1 ∈ Sm++ are constant in (3), where Sn++ is the set of n × n real symmetric positive definite matrices.
Moreover, F ⊆ Rnd × Rm is a convex set that can be represented in the form of

F =
{

(u, z) ∈ Rnd × Rm | Auu+Azz ≥ 0
}
, (4)

where Au and Az are constant matrices with appropriate sizes. The stability of ξ0 is determined by
solving (3) instead of (2).

Let Rn++ = {x = (xi) ∈ Rn | xi > 0 (i = 1, . . . , n)}. Let λ̃ ∈ R++ be a constant satisfying

Q0 + λ̃I ∈ Sn++, (5)

i.e. λ̃ is greater than the modulus of the smallest eigenvalue of Q0. Define Q̃0 ∈ Sn
d

++ by

Q̃0 = Q0 + λ̃I. (6)

For simplicity, we use the following notations:

x :=
(
u
z

)
, f̃(u, z) = uTQ̃0u+ zTQ1z, g(u, z) = ‖u‖2 − 1. (7)

Define ṽ by

ṽ = min
x

{
f̃(x) : x ∈ F , g(x) ≥ 0

}

= min
u,z

{
uTQ̃0u+ zTQ1z : (u,z) ∈ F , ‖u‖2 − 1 ≥ 0

}
. (8)

The relation between (3) and (8) is stated as follows.

Proposition 4.4. The problems (3) and (8) share the same set of optimal solutions, and ṽ = v∗ + λ̃.

The following is an immediate corollary of Definition 4.3 and Proposition 4.4:

Corollary 4.5. The equilibrium point ξ0 is stable (resp. unstable) if ṽ > λ̃ (resp. ṽ < λ̃).

We next propose an algorithm for (8) which for most cases converges to the global optimal solution
within the computational time acceptable for real engineering applications. By exchanging the objective
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function and the nonconvex constraint of (8), we consider the following family of problems with respect
to a parameter λ:

g∗(λ) := max
x

{
g(x) : x ∈ F , f̃(x) ≤ λ

}
, (9)

which defines the function g∗ : R++ → R. Note that (9) is a maximization of the convex function over
the convex set.

The relation investigated in Proposition 4.6 is sometimes called duality between the objective and
constraint functions [25].

Proposition 4.6. For any λ ∈ R++,

(i) ṽ ≥ λ implies g∗(λ) ≤ 0.

(ii) g∗(λ) ≤ 0 implies ṽ ≥ λ.

The following is the key result of this paper, which implies that the stability can be determined by
solving the problem (9) instead of the problem (8).

Theorem 4.7. The equilibrium point ξ0 is

(i) stable if g∗(λ̃) < 0;

(ii) unstable if g∗(λ̃) > 0.

Furthermore,

(iii) ṽ = λ if and only if g∗(λ) = 0.

It is clear that a feasible solution x of (8) is optimal if and only if f̃(x) = ṽ. Hence, the following is
an immediate corollary of Theorem 4.7 (iii).

Corollary 4.8. A feasible solution x of the problem (8) is optimal if and only if g∗(f̃(x)) = 0.

4.3. Sequential convex optimization algorithm
We have seen in Theorem 4.7 that the stability of the given equilibrium point is determined by solving
the problem (9). In this section we first propose an algorithm for (9).

We first show that the problem (9) can be reformulated as a DC (difference of convex functions)
programming problem [2]. Let ρ ∈ R++ be a constant. Define h1, h2 : Rnd × Rm → R by

h1(x) =
ρ

2
‖x‖2 + g(x), h2(x) =

ρ

2
‖x‖2. (10)

Note that h1 and h2 are strictly convex. Then the problem (9) is equivalently rewritten as

max
x

{
h1(x)− h2(x) : x ∈ F̃(λ)

}
, (11)

which is a DC programming problem.
The DC algorithm generates {xk} by defining xk+1 as the solution to the following problem [2]

max
x

{[
(yk)T(x− xk) + h1(xk)

]− h2(x) | x ∈ F̃(λ)
}
, (12)

where the dual variables y ∈ Rnd+nm
is updated by

yk := ρxk +∇g(xk). (13)

Substitution of (13) into (12) yields

max
x

{
(ρxk +∇g(xk))T(x− xk) +

(ρ
2
‖xk‖2 + g(xk)

)
− ρ

2
‖x‖2 : x ∈ F , f̃(x) ≤ λ

}
. (14)

By multiplying a constant 2/ρ and eliminating the constant terms, the objective function of (14) is
simplified without changing the optimal solution as

max
u,z

{
− ∥∥u− (1 + (2/ρ))uk

∥∥2 − ∥∥z − zk∥∥2
: (u, z) ∈ F , f̃(u, z) ≤ λ

}
. (15)

Note that (15) is an SOCP (second-order cone programming) problem [1], which can be solved efficiently
by using the primal-dual interior-point method. The following algorithm solves a convex problem (15)
sequentially to obtain a solution of (9).
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Algorithm 4.9 (sequential convex optimization method for (9)).

Step 0: Choose (u0, z0) ∈ Rnd × Rm, ρ > 0, and the tolerance ε > 0. Set k := 0.

Step 1: Find the optimal solution (uk+1, zk+1) of (15).

Step 2: If ‖(uk+1, zk+1)− (uk, zk)‖ ≤ ε, then stop. Otherwise, set k ← k + 1, and go to Step 1.

Algorithm 4.9 is guaranteed to be well-defined by the following proposition in the sense that the
subproblem (15) solved at each iteration has the unique solution. From Theorem 4.7 we obtain the
following corollary, which gives a sufficient condition for instability.

Corollary 4.10. Put λ := λ̃ in the problem (9), and let x∗ = (u∗,z∗) be an accumulation point of a
sequence {xk} generated by Algorithm 4.9. If g(x∗) > 0, then the equilibrium point ξ0 is unstable.

Since Algorithm 4.9 is based on a local optimality condition of the problem (9), it cannot guarantee
the global optimality of a solution obtained. However, it has been observed (see, e.g. [2]) that the DC
algorithm very often converges to global optimal solutions of various nonconvex optimization problems
in practice. Therefore, from Theorem 4.7 and the fact that Algorithm 4.9 with λ := λ̃ provides a lower
bound of g∗(λ̃), the equilibrium point is stable for most cases if g(x∗) < 0.

Note that, from Theorem 4.7, it is sufficient to compute g∗(λ̃) in order to determine the stability.
On the contrary, when we want to know the incremental displacement corresponding to the minimum
increment of potential energy, the problem (8) is to be solved. It follows from Corollary 4.8 that (8) can
be solved by using a bi-section method as follows.

Algorithm 4.11 (bisection method for (8)).

Step 0: Choose λ0 and λ
0

satisfying 0 < λ0 ≤ λ∗ ≤ λ0
, and the tolerance ε > 0. Set k := 0.

Step 1: If λ
k − λk ≤ ε, then stop. Otherwise, set λ := (λk + λ

k
)/2.

Step 2: Find an optimal solution (u∗, z∗) of the problem (9) by using Algorithm 4.9.

Step 3: If g(x∗) < 0, then set λk+1 := λ and λ
k+1

:= λ
k
. Otherwise, set λ

k+1
:= λ and λk+1 := λk.

Step 4: Set k := k + 1, and go to Step 1.

5. Structures including no-compression cables
Consider an elastic finite dimensional structure containing cable members that cannot transmit compres-
sive forces, i.e. the cable member is assumed to consist of no-compression material . The equilibrium
point ξ0 is defined by the total displacement vector in this section. The compatibility condition at ξ0

between the incremental member elongation cj and the incremental displacements u is written as

c(u) = B(ξ0)Tu, (16)

where B(ξ0) ∈ Rnm×nd
is a constant matrix, nm is the number of members, and nd is the number of

degrees of freedom of displacements.

5.1. Stability of structures with cables
Let J ⊆ {1, . . . , nm} denote the set of all indices of cable members with vanishing elongations at ξ0. We
denote by kc

j(cj) the elongation stiffness at ξ0 given by

kc
j(cj) =

{
dj if cj ≥ 0,
0 if cj < 0,

(17)

where dj ∈ R++ is a constant. Let K+(ξ0) ∈ Snd
denote the tangential stiffness matrix of the structure

obtained by neglecting the cable members belonging to J . Note that the slack cables at ξ0 do not
contribute to K+, while the contributions of tense cables are included in K+. From (17) and the
definition of K+, we see that v defined in (1) is reduced to

v(u) = uTK+(ξ0)u+
∑

j∈J
kc
j(cj)cj(u)2. (18)
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The stability determination problem is formulated as

v∗ = min
u

{
v(u) : ‖u‖2 = 1

}
, (19)

where the subsidiary conditions (16) and (17) should be satisfied. The following proposition prepares a
reformulation of the problem (19) into the form of (3):

Proposition 5.1 ([10, Prop. 3.1]). Let zj denote the optimal solution of the following problem:

wc
j(cj) := min

zj

{
djz

2
j : zj ≥ cj

}
. (20)

Then wc
j(cj) = kc

j(cj)c
2
j holds, and zj satisfies

zj =

{
cj if cj ≥ 0,
0 if cj < 0.

(21)

Define the vector zJ ∈ R|J | by zJ = (zj | j ∈ J ), which is the sub-vector of z composed of zj
indexed by the set J . Furthermore, let BJ ∈ Rnd×|J | denote the sub-matrix of B composed of the rows
indexed by J . Similarly, let dJ = (dj | j ∈ J ) and DJ = Diag(dJ ). By using Proposition 5.1 we can
reduce the problem (19) into the form of (3) as follows.

Proposition 5.2 ([10, Prop. 3.2]). The problem (19) is equivalent to the following problem:

min
u,zJ

{
uTK+u+ zT

JDJ zJ : zJ ≥ BT
Ju, ‖u‖2 = 1

}
, (22)

in the sense that u is optimal for (19) if and only if (u, zJ ) satisfying (21) with cJ = BT
Ju is optimal

for (22). Furthermore, The optimal value of (22) coincides with v∗ defined in (19).

5.2. Feasibility of problem (22)
According to (5), define a positive definite matrix K̃ by

K̃ = K+ + λ̃I, (23)

where λ̃ is a sufficiently large constant. The perturbed problem (8) defining ṽ is explicitly obtained as

ṽ = min
u,zJ

{
uTK̃u+ zT

JDJ zJ : zJ −BT
Ju ≥ 0, ‖u‖2 − 1 ≥ 0

}
. (24)

Proposition 4.4 verifies to solve (24), instead of (22), in order to determine the stability. The explicit
form of (9), which defines g∗, is given by

g∗(λ) = max
u,zJ

{
‖u‖2 − 1 : zJ −BJu ≥ 0, uTK̃u+ zT

JDJ zJ ≤ λ
}
. (25)

According to Theorem 4.7 we solve (25) with λ := λ̃ by using Algorithm 4.9 in order to determine stability
of the given equilibrium point ξ0.

6. Frictionless unilateral contact problems
Let dim ∈ {2, 3}, and consider a finite-element discretization of an elastic structure in Rdim, which
possibly contact with fixed rigid obstacles without friction. The configuration of the structure is described
by ξ ∈ Rnd

, which is the position vector of the nodes with respect to the global coordinate system. Some
nodes are supposed to be subjected to the unilateral contact constraints, and we denote by PC the set of
indices of contact candidate nodes.

Let xp ∈ Rdim denote the position vector of the pth node with respect to an appropriately defined
reference frame. For each p ∈ PC, the surface of the corresponding obstacle is identified by {x ∈ Rdim |
φp(x) = 0}. The admissible region of the position vector is written as

{ξ ∈ Rnd | φp(xp(ξ)) ≤ 0 (p ∈ PC)}. (26)
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On each point of the surface, define np(x) ∈ Rdim by np(x) = ∇φp(x)/‖∇φp(x)‖, which is the unit
inner normal vector of the surface. The reaction at the pth node, rpn ∈ R, is restricted to be in the
direction opposite to np. The unilateral contact condition is written as

φp(xp(ξ)) ≤ 0, rpn ≤ 0, φp(xp(ξ))rpn = 0, (27)

for each p ∈ PC. Define a partition Pf , P0, and Pr of the set PC as

Pf(ξ) = {p ∈ PC | φp(xp(ξ)) < 0} , [currently not in contact (free)],
P0(ξ) = {p ∈ PC | φp(xp(ξ)) = 0, rpn = 0} , [currently in contact without reaction],
Pr(ξ) = {p ∈ PC | φp(xp(ξ)) = 0, rpn < 0} , [currently in contact with reaction].

Let u ∈ Rnd
denote the infinitesimal incremental displacement vector defined with respect to the

global coordinate system. For each p ∈ PC we denote by upn the projection of the incremental nodal
displacement of the pth node onto the direction of np. Define gpn : Rnd → Rnd

by

gpn(ξ) =
[
∂xp

∂ξ
(ξ)
]T

np(xp(ξ)),
∂xp

∂ξ
(ξ) =

(
∂xp

∂ξj
(ξ) | j = 1, . . . , nd

)
.

Then the relation between upn and u is written as (see, e.g. [14], for more details)

upn = gpn(ξ)Tu. (28)

Suppose that the equilibrium point is given as ξ = ξ0. Define the matrices T 0 and T r by

TT
0 =

(
gpn(ξ0) | p ∈ P0(ξ0)

)
, TT

r =
(
gpn(ξ0) | p ∈ Pr(ξ0)

)
.

From (26), (27), and (28) it follows that the admissible set of u is written as

A(ξ0) = {u ∈ Rnd | T 0u ≤ 0, T ru = 0}. (29)

At the given equilibrium configuration ξ0, let K ∈ Snd
denote the tangential stiffness matrix, which

depends on the curvature of the obstacle surface [11]. Because of the geometrical nonlinearity, K is
indefinite in general. It follows from (29) that the stability of ξ0 is determined by solving the following
problem:

v∗ = min
u

{
uTKu : u ∈ A(ξ0), ‖u‖2 = 1

}
. (30)

Thus we can reduce the stability determination problem for frictionless contacts in the form of (2). The
SOCP problem that is to be solved in our algorithm can be obtained in a manner similar to section 4.3.

7. Directional stability of elastic-plastic trusses
Consider an elastic-plastic truss. The large deformation is considered in general. The tangential stiffness
is defined as the sum of the linear and the geometrical stiffness matrices.

At the given equilibrium point ξ0, the yield function of the jth member is dented by φj(·; ξ0) : R→ R,
where we assume an associated flow rule for simplicity. Note that ξ0 consists of the current nodal
coordinates and yield stresses that are path-dependent. The axial force, qj , of each member should
satisfy φj(qj ; ξ0) ≤ 0 at ξ0. The compatibility relation between the incremental member elongation cj
and the incremental displacements u is given by (16). Define νj by

νj = dφj(qj ; ξ0)/dqj .

At the yielding state, i.e. φj(qj ; ξ0) = 0, loading and unloading are characterized by νjcj > 0 and
νjcj < 0, respectively.

7.1. Directional stability of elastic-plastic trusses
Let q0

j denote the axial force at ξ0. Define the partition J and J of the set of member indices by

J =
{
j ∈ {1, . . . , nm} | φj(q0

j ; ξ0) = 0
}
, J =

{
j ∈ {1, . . . , nm} | φj(q0

j ; ξ0) < 0
}
.
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Figure 1: A cable-strut system.

Figure 2: Optimum solution of (24) for the cable-
strut system.

Let kj(cj) denote the tangential elongation stiffness at ξ0, which is written in the form of

kj(cj ; q0
j ) =

{
dp
j , if νjcj ≥ 0,
de
j , if νjcj < 0,

(31)

where de
j , d

p
j ∈ R++ are the constants.

Consider the truss obtained by neglecting the linear stiffnesses of members belonging to J . The
tangential stiffness matrix of the obtained structure is denoted by Ke(ξ0) ∈ Snd

, which is a constant
matrix at the given ξ0. From (31) and the definition of Ke, v defined by (1) is written as

v(u) = uTKe(ξ0)u+
∑

j∈J
kj(cj ; q0

j )cj(u)2. (32)

Then the directional stability determination problem, (2), is formulated as

v∗ = min
u

{
v(u) : ‖u‖2 = 1

}
, (33)

where the subsidiary conditions (16) and (31) should be satisfied. In a manner similar to section 5.2, we
can show that (33) is reduced to an optimization problem in the form of (9).

8. Numerical experiments
The stability determination problems (8) and (9) are solved for various structures by using Algorithms 4.11
and 4.9, respectively. We reformulate the subproblem (15) as an SOCP problem, and solve it by using
SeDuMi Ver. 1.1 [20, 22], which implements the primal-dual interior-point method for the linear pro-
gramming problem over symmetric cones. Computation has been carried out on Pentium M (1.2 GHz
with 1.0 GB memory) with MATLAB Ver. 7.0.1 [28].

In the following examples, the elastic modulus of structures is 200 GPa, and an initial solution
(u0, z0

J ) for Algorithm 4.9 is generated randomly by using MATLAB built-in-function ‘rand ’ so that
‖(u0, z0

J )‖∞ ≤ 0.5 is satisfied. At Step 2 of Algorithm 4.11, the optimal solution obtained in the
previous iteration is used as an initial solution for Algorithm 4.9. The termination tolerance is chosen as
ε = 10−3 at Step 0 of Algorithm 4.9. At Step 0 of Algorithm 4.11, we choose ε = 10−4λ̃, λ

0
= 2λ̃, and

λ0 = 0. The parameter ρ introduced in (10) is chosen as ρ = 0.1 for all examples.
Consider a plane cable-strut system illustrated in Figure 1, where W = 1.0 m, H = 1.0 m, nd = 70,

and nm = 82. The nodes (a1)–(a5), (c1)–(c7), and (d1)–(d7) are pin-supported. The displacements of
the nodes (b1)–(b5) are constrained in the y-direction. The stability determination problems for the
cable-strut structures have been investigated in section 5. See [10] for numerical examples of frictionless
contacts and elastoplastic trusses.

The members in the x-direction are struts modeled as truss members, while the members in the
y-direction are cables that do not transmit compressive forces. The cross-sectional areas of struts and
cables are 5 × 10−3 m2 and 0.32 × 10−3 m2, respectively. As for the external force, 1.5 MN is applied
in the negative direction of the x-axis at nodes (b1)–(b5). Note that Figure 1 illustrates the deformed
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equilibrium configuration corresponding to the applied load, i.e. the initial unstressed length of each cable
member is equal to H. Therefore, the elongation of each cable member vanishes at the given equilibrium
point, and hence |J | = 42. Accordingly, the number of possible combinations in the formulation of the
tangential stiffness matrix is 242.

At the equilibrium point, the smallest eigenvalue of the tangential stiffness matrix K+ obtained by
neglecting all the cable members is λ1 = −5.772. Hence, we choose λ̃ = 6.060 (i.e. λ̃ = 1.05|λ1|) in (23).
For the sake of the stability determination, the problem (25) is solved with λ := λ̃ by using Algorithm 4.9
to obtain g∗(λ̃) = 1.831× 10−3. Hence, from Corollary 4.10 we can conclude that the equilibrium point
is unstable. The CPU time required by Algorithm 4.9 is 8.61 seconds, and 48 SOCP problems are solved.

We next solve (24) in order to obtain the incremental displacements corresponding to the minimal
incremental total potential energy. By using Algorithm 4.11, we obtain ṽ = 6.049 and v∗ = −1.147×10−2

defined in (19). This result verifies that the equilibrium point is unstable in association with Definition 4.3.
Figure 2 illustrates the optimal solution obtained, where the slackening cable members have been removed.
Algorithm 4.11 requires 15 iterations and 12.8 seconds of the CPU time. In total, 71 SOCP problems are
solved, and the average CPU time for solving one SOCP problem is 0.18 seconds. Note that 48 SOCP
problems are solved in the first iteration of Algorithm 4.11, while 1.64 SOCP problems in average are
required for the remaining iterative steps. This is because the optimal solution of (9) obtained in the
previous iteration is used as an initial solution of the next iteration. Notice again that it is sufficient to
solve (25) with λ := λ̃ in order to determine the stability of the given equilibrium point.

As an alternative case, we choose a slightly larger cross-sectional area 0.33× 10−3 m2 for each cable
member. The optimal value of (25) with λ := λ̃ is computed by using Algorithm 4.9 as g∗(λ̃) = −2.459×
10−2. Provided that the obtained solution is globally optimal, Theorem 4.7 implies that the equilibrium
point of this case is stable. The problem (24) is solved by using Algorithm 4.11 to obtain ṽ = 6.213 and
v∗ = 1.528 × 10−3. Thus, the cable-strut system is stabilized by slightly increasing the cross-sectional
areas of cables. Moreover, from these two results, we may conjecture that the global optimal solutions of
(24) are successfully found.

9. Conclusions
In this paper, we have proposed a numerical technique for determining the stability of the given equilib-
rium point of structures subjected to the unilateral constraints. We have shown that the stability of a
given equilibrium point of a nonsmooth mechanical system can be determined by solving a maximization
problem of a convex quadratic function over a convex homogeneous quadratic inequality and some linear
inequalities.

In order to solve the presented stability determination problem, we propose a method based on the
so-called DC algorithm for a DC (difference of convex functions) programming . In our algorithm, we
solve a sequence of second-order cone programming problems, which can be solved efficiently by using
the primal-dual interior-point method.

It has been shown in the numerical examples of various structures subjected to the unilateral con-
straints that the algorithm presented can find if the given equilibrium point is directionally stable or
not. For nonconvex programming problems, there is no practicable global optimal conditions in general,
which makes it difficult to check the global optimality of solutions obtained by the proposed algorithm.
However, throughout parametric studies it has been shown that the solutions obtained seem to be globally
optimal for our numerical examples.

10. Acknowledgment
The first author was supported in part by Global COE Program “The research and training center for
new development in mathematics”, MEXT, Japan.

References

[1] Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program., B95, 3–51 (2003).
[2] An, L.T.H., Tao, P.D.: The DC (difference of convex functions) programming and DCA revisited

with DC models of real world nonconvex optimization problems. Annals of Operations Research,
133, 23–46 (2005).

[3] Atai, A.A. and Steigmann, D.J., On the nonlinear mechanics of discrete networks, Arch. Appl. Mech.,
67 (1997) 303–319.

9



[4] Bignoni, D.: Bifurcation and instability of non-associative elastoplastic solids. In: Material Instabil-
ities in Elastic and Plastic Solids, H. Petryk (ed), Springer–Verlag, Wien, pp. 1–52.

[5] Casciaro, R., Mancusi, G.: Imperfection sensitivity due to coupled local instability: a non-convex
QP solution algorithm. Int. J. Numer. Methods Engrg., 67, 815–840 (2006).

[6] Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer-Verlag, Berlin, 1976.
[7] Hill, R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Physics Solids,

6, 236–249 (1958).
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