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1. Abstract
Uniqueness of solution is investigated for topology optimization problem of a plate subjected to in-plane
loading condition. The compliance is minimized under constraint on the structural volume. The SIMP
approach as well as a filter function is used for preventing convergence to a solution with intermediate
densities or a checkerboard pattern. Local non-uniqueness of the solution is defined as a bifurcation of the
solution path with respect to the penalization parameter. The optimal solutions are also globally searched
from randomly generated initial solutions. It is shown that the global optimal solution cannot always
be obtained by continuation with respect to the penalization parameter, although a good approximate
solution is found in the numerical examples.

2. Keywords: topology optimization, continuation method, uniqueness of solution, compliance

3. Introduction
There have been numerous researches on topology optimization of plate (sheet), which is discretized to
finite elements, and subjected to in-plane static loads. In most of researches, the compliance is minimized
under constraint on the total structural volume. The 0-1 thickness variable is relaxed to a real variable,
and the standard nonlinear programming (NLP) is used to find the optimal topology after removing
the element with vanishing thickness. However, simple application of NLP results in the solution with
intermediate thickness in many elements, which is called gray solution. Therefore, the intermediate
thickness is penalized to have small stiffness using, e.g., the solid isotropic material with penalization
(SIMP) approach [1], or penalized to have artificially large structural volume [2]. The homogenization
method is also effective for preventing gray solutions [3, 4]. Another difficulty of checkerboard solution is
avoided using the penalization in perimeter length [5], or in the gradient of the thickness [6]. A smoothing
filter of the thickness [2, 7] can be used for regularizing the problem. Optimal topology can be controlled
by varying the parameter for the filter function. Rirtz [8] obtained various topologies for different values
of gradient parameter.

In the SIMP approach, larger penalization leads to a 0-1 solution; however, the convergence property
is deteriorated if the penalization parameter is too large, because the convexity of the objective function is
lost. Therefore, the optimal solutions are traced by gradually increasing the penalization parameter based
on the so called continuation method. In the rigorous definition of continuation method, the path of the
solutions is traced based on the differentiation of the governing equations [9], which is basically same as
the parametric programming approach [10, 11] or homotopy method [12] for tracing the optimal solutions
corresponding to the various parameter values [13]. However, in most of the continuation methods
for the plate (sheet) topology optimization problems, the governing equations are not differentiated,
and the solutions are found consecutively with increasing value of the penalization parameter. Stolpe
and Svanberg [14] investigated the trajectory of the optimal solutions with respect to the penalization
parameter for a problem for minimizing the worst value of compliances under multiple loading conditions.
It was shown that the integer solutions are local optima that may be discontinuous with respect to the
penalization parameter, and the continuation method will not produce the global optimal solution.

Uniqueness and stability of the optimal solution have been studied by many researchers. Jog and
Haber [15] derived the conditions of stability using incremental form of the variational problem. Pe-
tersson [16] investigated convergence of the solution with respect to the mesh size, and noted that the
objective function may be insensitive to the thickness variation for special loading condition with bilinear
elements.

∗Corresponding author.
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In this study, we first define local non-uniqueness of the solution as a bifurcation of the solution path
with respect to the penalization parameter. The formulations for numerical continuation with respect
to the penalization parameter is rigorously derived by differentiating the Karush-Kuhn-Tucker (KKT)
conditions and the stiffness (equilibrium) equations, and the conditions for local uniqueness of the solution
is derived as the singularity of the Jacobian of the governing equations [17–19]. Therefore, the proposed
procedure is applicable to any types of optimization problems. It is shown that the globally optimal
solution cannot be obtained by continuation with respect to the penalization parameter; hence, the
simple continuation without differentiation of the governing equations is not valid for this problem. We
show that nonuniqueness exists in the displacements, although the thicknesses may be locally unique as
discussed by Kočvara and Outrata [20]. Next, the optimal topologies are also globally searched from many
randomly assigned initial solutions to show that various local optimal solutions with different topologies
and almost same objective function value exist for this problem.

4. Continuation method and bifurcation of solution path
Consider a problem of finding the solution x ∈ Rq defined by the nonlinear equation

F (x, t) = 0 (1)

where t is a parameter, and F (x, t) ∈ Rq is continuously differentiable with respect to x and t. Since the
solution is defined by (1) for each specified value of t, it is regarded as a function of t, and is denoted
by x̃(t). Suppose we have a solution x̃(t0) for t = t0. Then the solution for t = t0 + ∆t can be linearly
approximated as

J
[
x̃(t0 + ∆t)− x̃(t0)

]
+

∂F

∂t
∆t = 0 (2)

where J ∈ Rq×q is the Jacobian of F , for which the (i, j)-component Jij is defined as

Jij =
∂Fi

∂xj
(3)

Bifurcation of the solution path exists if J is singular [18, 19]. If J is non-singular, then the solution
path can be found using a Newton-Raphson-type iterative correction of the governing equation (1) in a
similar manner as the arc-length method for geometrically nonlinear equilibrium analysis.

Jog and Haber [15] derived the conditions of stability using incremental form of the variational problem
for a min-max optimization problem. However, our approach for investigation of uniqueness of optimal
solution is applicable to any type of nonlinear programming problem.

5. Optimization problem and optimality conditions
Consider a plate discretized to finite elements, and subjected to in-plane loading. The number of elements
and the number of degrees of freedom are denoted by m and n, respectively. Let dj denote the thickness
of the jth element, for which the upper and lower bounds are given as

dL
j ≤ dj ≤ 1, (j = 1, . . . , m) (4)

where dL
j is a sufficiently small positive value. We investigate the effect of a filter function on uniqueness

of the solution. As an example, we use the filter by Bruns [2], where function ωj is defined as

ωj(sij) =





1
(2/3)πr

exp

(
− s2

ij

2(r/3)2

)
for sij ≤ r

0 for sij > r

(5)

where r is the radius of filter, and sij is the distance between the centers of the ith and jth elements.
The thickness φi of the ith element is defined as the function of d = (d1, . . . , dm)> as

φi(d) =
m∑

j=1

Ωijdj , Ωij =
ωj(sij)

ωi
, ωi =

m∑

j=1

ωj(sij) (6)

Note that Ωij = 1 for i = j and 0 for i 6= j corresponds to the formulation without filter.
The objective function to be minimized is the compliance C(d) given as

C(d) = P>U(d) (7)
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where P ∈ Rn is the specified external load vector, and the nodal displacement vector U ∈ Rn is obtained
from the following equilibrium equation:

KU = P (8)

where K ∈ Rn×n is the stiffness matrix.
We use the SIMP approach to prevent gray optimal solutions. The stiffness matrix K is defined

by the matrix Ki ∈ Rn×n corresponding to the unit thickness of the ith element and the penalization
parameter p as

K =
m∑

i=1

φp
i Ki (9)

Then the problem of minimizing the compliance is formulated with respect to the variable vector d as

minimize C(d) = P>U(d) (10a)

subject to
m∑

i=1

φi(d) = V̄ (10b)

dL
j ≤ dj ≤ 1, (j = 1, . . . , m) (10c)

where V̄ is the specified value of the total structural volume.
The Lagrangian of problem (10) is formulated as

L(d, λ, µU,µL) = C(d) + λ

(
m∑

i=1

φi(d)− V̄

)
+

m∑

j=1

µU
j (dj − 1) +

m∑

j=1

µL
j (−dj + dL

j ) (11)

where λ, µU
j and µL

j are the Lagrange multipliers. By differentiating (11) with respect to dj , we have

∂L

∂dj
= −

m∑

i=1

Ωijpφp−1
i (d)U>KiU + λ

m∑

i=1

Ωij + µU
j − µL

j (12)

Define G(d) as

G(d) =
m∑

i=1

Ωijpφp−1
i (d)U>KiU − λ

m∑

i=1

Ωij (13)

Then the optimality conditions (KKT conditions) are derived as

G(d)





= 0 for dL
j < dj < 1

≥ 0 for dj = 1
≤ 0 for dj = dL

j

(14)

The set of s elements satisfying G(d) = 0 with equality is denoted by I; i.e.,

I =
{
i | dL

i < di < 1
}

(15)

6. Sensitivity of optimal solution with respect to penalization parameter
Equations for sensitivity analysis of the optimal solutions with respect to p are derived below, where (·)′
indicates differentiation with respect to p. We use the following relation:

(φp
i )
′ = φp

i lnφi + φp−1
i p

m∑

j=1

Ωijd
′
j (16)

By differentiating (8) with respect to p, we have

KU ′ +
m∑

i=1

m∑

j=1

pφp−1
i Ωijd

′
jKiU = −

m∑

i=1

φp
i lnφiKiU (17)

By differentiating the volume constraint (10b) and multiplying −1/2, we obtain

−1
2

m∑

i=1

m∑

j=1

Ωijd
′
j = 0 (18)
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Figure 1: A 10× 10 plate model.

Suppose the active constraints remain active in the neighborhood of the current parameter value.
Then, for the elements dL

l < dl < 1 (l ∈ I), differentiation of G(d) = 0 leads to

m∑

i=1

pφp−1
i ΩilU

>KiU
′ +

1
2

m∑

i=1

m∑

j=1

p(p− 1)φp−2
i ΩilΩijd

′
jU

>KiU − 1
2
λ′

m∑

i=1

Ωil

= −1
2

m∑

i=1

pφp−1
i lnφiΩilU

>KiU − 1
2

m∑

i=1

φp−1
i ΩilU

>KiU , (l ∈ I)

(19)

For i /∈ I, we have d′i = 0. Therefore, there are n+ s+1 linear equations (17), (18) and (19) for n+ s+1
variables U ′, d′i (i ∈ I) and λ′.

The member numbers are rearranged so that I = {1, . . . , s}, and define d0 = (d1, . . . , ds)>. Then the
linear equations for computing the parametric sensitivity coefficients of the optimal solution are written
as 



K B12 0

B12> B22 B23

0> B23> 0







U ′

d′0
λ′


 =




b1

b2

0


 (20)

which is simply written as
BX ′ = b (21)

Let Hi = U>KiU , and b2 = (b2
1, . . . , b

2
s)
>. The (i, j)-components of B12 ∈ Rn×s, B22 ∈ Rs×s, and

ith component of B23 ∈ Rs are denoted by B12
ij , B22

ij , and B23
i , respectively. The jth column of Ki is

denoted by kij ∈ Rn. Then the components of the symmetric matrix B ∈ R(n+s+1)×(n+s+1) and the
constant vector b ∈ Rn+s+1 are given as

B12
ij = p

m∑

k=1

φp−1
k Ωkjk

>
kiU , B22

ij =
1
2
p(p− 1)

m∑

k=1

φp−2
k ΩkiΩkjHk, B23

i = −1
2

m∑

k=1

Ωki (22)

b1 = −
m∑

i=1

φp
i lnφiKiU , b2

i = −1
2

m∑

k=1

{Ωki(1 + p lnφk)}φp−1
k Hk (23)

The optimal solutions can be traced successively solving (21), where the set of elements in I should be
appropriately updated [21]. Since B is symmetric, the stability of solution is detected from the eigenvalues
or the condition number of the matrix.

We can solve U ′ using the first equation of (20) as

U ′ = K−1b1 −K−1B12d′0 (24)

which is incorporated to the second and third equations of (20) to obtain
(

B22∗ B23

B23> 0

)(
d′

λ′

)
=

(
b2 −B12>K−1b1

0

)
, B22∗ = B22 −B12>K−1B12 (25)
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Figure 2: Solution path of dj of elements A, B, C and D with respect to p (without filter).
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Figure 3: Variations of condition numbers and objective function (without filter).

Note that the vector B23 is nonzero, and all components are 1/2 if filter is not used. Therefore, it can
be easily shown that the solution is unique if B22∗ is non-singular.

Jog and Haber [15] derived the conditions of uniqueness and stability of the optimal solution such
that K and B22∗ are positive definite based on incremental form of the variational form of the min-max
optimization problem. Note that the sign of B22∗ in [15] is different from B22∗ in (20), because the
definition of the Lagrangian is different. It should also be noted that the conditions for uniqueness of the
solution has been derived using a simple manner based on the stability of the solution path. Furthermore,
the singularity of K leads only to non-uniqueness of the displacements that may not have any effect of
non-uniqueness of the thickness variables [20].

7. Numerical examples
Consider a square plate as shown in Fig. 1 subjected to the concentrated load P = 10. The total size of
the plate is 1000× 1000, and is discretized to 100 square elements with bilinear displacement fields and
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Figure 4: Solution path of φj of elements A, B, C and D with respect to p (with filter).

 1.0e+0

 1.0e+1

 1.0e+2

 1.0e+3

 1.0e+4

 1.0e+5

 1  1.5  2  2.5  3

logscale

B22

 1.0e+0

 1.0e+1

 1.0e+2

 1.0e+3

 1.0e+4

 1.0e+5

 1  1.5  2  2.5  3

logscale

B∗
22

 1.0e+5

 1.0e+6

 1.0e+7

 1.0e+8

 1.0e+9

 1.0e+10

 1.0e+11

 1.0e+12

 1.0e+13

 1.0e+14

 1  1.5  2  2.5  3

logscale

K

 1.0e+5

 1.0e+6

 1.0e+7

 1.0e+8

 1.0e+9

 1.0e+10

 1.0e+11

 1.0e+12

 1.0e+13

 1.0e+14

 1  1.5  2  2.5  3

logscale

B

 0.15

 0.20

 0.25

 0.30

 0.35

 0.40

 0.45

 0.50

 1  1.5  2  2.5  3

λ

  0

 10

 20

 30

 40

 50

 60

 70

 80

 1  1.5  2  2.5  3

s

 9.0

10.0

11.0

12.0

13.0

14.0

15.0

 1  1.5  2  2.5  3

Objective function

 9.8
 9.9
10.0
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

 1  1.5  2  2.5  3

Compliance

 0.0
 5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0

 1  1.5  2  2.5  3

B>
12B12

Figure 5: Variations of condition numbers and objective function (with filter).

constant thickness. The elastic modulus is 200, and the specified structural volume is 4000. The lower
bound of the thickness is 0.0001. Optimization is carried out by SNOPT Ver. 7 [22], where the sequential
quadratic programming (SQP) is used. The default values are used for the parameters except the strict
tolerance 10−12 for feasibility and optimality of the solution.

The formulation of sensitivity of optimal solution with respect to the parameter p is first confirmed
for the case with filter function, where the radius r of the filter is 150. For p = 1.0, the optimal thickness
of the elements A, B, C, D and E indicated in Fig. 1 are dA = 0.360639, dB = 0.574237, dC = 0.291846,
dD = 0.318318 and dE = 1.000000. The sensitivity coefficients are obtained as d′A = −0.2614, d′B =
1.8565, d′C = 0.8852, d′D = 0.5600 and d′E = 0. The sensitivity coefficients obtained by the forward finite
difference with ∆p = 0.001 are d′A = −0.266, d′B = 1.86, d′C = 0.894, d′D = 0.565 and d′E = 0, which agree
in good accuracy with the analytical results.

Consider the case without filter. Optimal solutions are found for the parameters between p = 1.0 and
3.0 with the increment ∆p = 0.01, by tracing the solution path assigning the solution of p −∆p as the
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C=9.845

Figure 6: Global optimal solution for p = 1.0.

C=12.92 C=13.02 C=12.95 C=12.93 C=13.04 C=12.93

Figure 7: Local optimal solutions for p = 2.0.

C=15.05 C=14.83 C=14.77 C=18.39 C=20.10 C=18.95

Figure 8: Typical local optimal solutions for p = 3.0.

initial solution for the SQP algorithm. Fig. 2 shows the path of the variables dj of elements A, B, C and
D. As is seen, the optimal solutions are piecewise continuous functions of p, where discontinuity exists at
the parameter value when the number s of the elements in I changes.

The condition numbers in log scale, the number s of variables in I, the objective function and
compliance are plotted in Fig. 3. For p = 2.0, the condition number of B is 7.10187 × 109, λ = 0.3087
and s = 15. Note that the condition number of K is 7.10183 × 109, which is very large. Therefore, the
singularity of B is due to that of K; i.e., non-uniqueness exists in U . By contrast, the condition numbers
of B22 and B∗

22 are 13.973 and 66.771, respectively, which are sufficiently small. Therefore, the solution
is locally unique. It is also seen from Fig. 3 that the matrix B12 is full (column) rank with s < n.

For p = 1.1 without filter, λ = 0.2135, s = 53, and the condition numbers for K, B22, B∗
22 and B

are 1.22391× 106, 5340.2, 6672.9 and 1.16153× 106, respectively. Therefore, no bifurcation is found for
the solution path of the optimal thickness variables at p = 1.1.

It should be noted that the condition number of B∗
22 is very small, although K is ill-conditioned.

This fact corresponds to the condition for uniqueness of the solution such that K is positive definite in
Ker B12>, together with the fact that B12 is full rank.

We next consider the case with filter function, where the radius r of the filter is 150. Fig. 4 shows the
path of the variables dj of elements A, B, C and D, which are also piecewise continuous functions of p.
Note that the possibility of obtaining gray solutions increases with the use of filter function. The condition
numbers, the number s of variables in I, the objective function and compliance, which is computed from
the thickness without penalization, are plotted in Fig. 5.

8. Global search of optimal solutions
We generate various local optimal solutions from 100 random initial solutions using filter functions with
radius 150. The number of local optimal solutions is 6 for p = 2.0, and 31 for p = 3.0. The two solutions
are considered to be different if the difference in the thickness is more than 0.1 in at least one element. The
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Figure 10: Solution path of φj of elements A, B, C and D with respect to p.
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Figure 11: Solution path of dj of elements A, B, C and D with respect to p.

typical solutions for p = 1.0, 2.0, and 3.0 are shown in Figs. 6–8, respectively. Note that the values of the
objective function and compliance of the best solution at p = 3.0 are 14.8815 and 10.7597, respectively,
while those in Fig. 5 obtained by continuation are 14.7653 and 10.2937, respectively. Therefore, a good
approximate solution has been found in this case, although the best solution could not be found.

Since the objective function is convex for p = 1.0, the same global solution has been found from 100
different initial solutions irrespective of the filter radius, and also for the case without filter function. It
has also been confirmed that best solution from randomly generated initial solutions for p = 2.02 can be
obtained from the best solution of p = 2.00 as the initial solution for SQP. The similar results have been
confirmed for the solutions for p = 2.52 and 3.00 obtained from the initial solutions corresponding to
p = 2.50 and 2.98, respectively; therefore, continuation approach is effective for this problem, if a small
value is chosen for the increment of p.

The variation of the objective function, compliance, norm |d′| of sensitivity coefficient of the optimal
solution, and the number of local optimal solutions are plotted in Fig. 9. Note that the norm is plotted
only for the solution that has the smallest objective value at each parameter value. As is seen, the
objective function and compliance of the local optimal solutions are widely distributed if p is large.
However, no divergence has been found for the solution path, because |d′| has finite values. Therefore,
non-uniqueness of the solution is due to the existence of many isolated local optimal solutions. The
optimal thickness and design variable for various values of p between 1.0 and 3.0 are shown in Figs. 10
and 11, respectively.
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9. Conclusion
A simple formulation has been presented for investigating local non-uniqueness of the optimal solution of
a plate that minimizes the compliance under specified in-plane load and the total structural volume. The
plate is discretized to finite elements with bilinear displacement interpolation and constant thickness. The
conditions of non-uniqueness of the solution are derived based on a bifurcation of the solution path with
respect to the penalization parameter of the SIMP approach. The formulations for numerical continuation
with respect to the penalization parameter is rigorously derived by differentiating the KKT conditions
and the stiffness (equilibrium) equations.

It has been shown that the globally optimal solution cannot be obtained by continuation with respect
to the penalization parameter, although a good approximate solution has been found in the particular
numerical example. The condition numbers of the matrix for computing the sensitivity coefficients of the
optimal solutions, and the corresponding sub-matrices, have been computed to show that non-uniqueness
of the nodal displacements may seriously deteriorates the accuracy of the solution path, although no
spurious mode has been found in this example.

The optimal topologies have also been globally searched from many randomly assigned initial solutions
to show that various local optimal solutions with different topologies and almost same objective function
value exist for this problem.
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