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ABSTRACT

A new approach is presented for determination of equivalent static seismic loads for evaluat-
ing maximum seismic responses of spatial frames. The responses are estimated by series of
pushover analyses considering possible phase differences in the dominant modes. The vibra-
tion modes of the initial elastic structure are used, and the damping due to plastic dissipation
is modeled by equivalent linearization for inelastic systems. The accuracy of the proposed
method is demonstrated in the numerical examples of an arch-type long-span truss and a 3-
story 3-dimensional building frame.

1. INTRODUCTION

In seismic design process of structures, static analysis is commonly adopted to approximately
estimate the maximum responses. For this purpose, there have been numerous studies on de-
velopment of equivalent static loads for building frames considering effect of several dominant
modes, usually in the form of modal combination. For inelastic systems, however, the modal
combination rules for elastic systems are not directly applicable. Therefore, several methods for
adaptive force distribution are proposed to follow more closely the time-variant distributions of
inertia forces, so as to provide better prediction [1, 2]. Modal combination rules are also pre-
sented for defining the static loads [3, 4]. Kunnath [5] presented a method to take snapshots of
the deformation at which a response quantity has the maximum value. However, an empirically
estimated combinations of modal coefficients are used for defining several load patterns.

In these methods for building structures, the base shear and roof displacement are used as repre-
sentative force and displacement, which cannot be used for estimating the vertical responses of
spatial frames. Nakazawaet al. [6] presented a method of adaptive modal pushover analysis for
spatial frames. Katoet al. [7] applied multi-modal pushover analysis to reticulated domes. In
this study, we present a general approach to define several load patterns using the elastic eigen-
modes and response spectra. A new definition is proposed for the representative displacement
and acceleration that is applicable to spatial frames. The variation of the maximum responses
are successfully evaluated by static pushover analyses of several times.
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Fig.1. Determination of coefficientsαn for
the case where two modes dominate.
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Fig.2. Capacity diagram and demand spec-
trum.

2. MODAL LOAD COEFFICIENTS

Let Φn denote thenth mode of undamped free vibration. The vector in which the components
corresponding to the input direction are 1, and the remaining components are 0 is denoted byI .
The participation factorΓn and the equivalent massMn of thenth mode are defined as

Γn = Φ>n MI , Mn = (Γn)
2 (1)

whereM is the mass matrix, andΦn is orthonormalized byΦ>i MΦ j = δi j with the Kronecker
deltaδi j . Let fn0 denote the static load vector corresponding to thenth mode. We assume, for
simplicity, thatN modes from 1st toNth are used. The static seismic loadf0 is defined as a
linear combination offn0 with the coefficientαn as

f0 =

N∑

n=1

αnfn0 =

N∑

n=1

αnΓnSa(ωn)MΦn (2)

whereSa(ωn) is the value of the acceleration response spectrumSa(ω) corresponding to thenth
mode, andωn is thenth natural circular frequency.

If damping is not very large, the deformation at which a displacement component takes the
maximum can be found by applying the inertia forcesf0 in Eq. (2) statically to obtain the max-
imum displacement. Therefore, the process of finding the maximum displacement is reduced
to that of determining the coefficientsαn for the seismic load vector. Suppose the component
of moden makes a sinusoidal response in full scale around the time instance of maximum re-
sponse of an particular displacement component. Then the responsern0(t) of thenth mode with
the amplitudeΓnSa(ωn)/ω2

n and the phase angleθn is given as

rn0(t) =
ΓnSa(ωn)

ω2
n

sin(ωnt − θn) (3)

Supposeθn is distributed randomly in the interval [0,2π], and consider the case where the max-
imum response is to be found for theith displacement component. Then define the sumr0(t) of



rn0(t) as

r0(t) =

N∑

n=1

sign(φni)rn0(t) (4)

where sign(φni) is the sign of theith component ofΦn. Let tmax denote the time at which
r0(t) takes the maximum absolute value. Then the coefficientαn at tmax is adopted as the load
coefficient:

αn = sin(ωntmax− θn) (5)

where the maximum value is computed in the half period of the most dominant mode.

For example, suppose the modes 1 and 2 dominate, and we find the coefficientsα1 andα2 as
illustrated in Fig. 1. The amplitudes of the two modes are assumed asΓ1Sa(ω1)/ω2

1 = 2.0,
Γ2Sa(ω2)/ω2

2 = 1.0. The natural periods are 2π/ω1 = 2.0 sec. and 2π/ω2 = 1.0 sec., and the
phase angles areθ1 = 0 andθ2 = π/6. As is seen,r10(t) + r20(t) takes the maximum value at
t = tmax = 0.4 sec., and the corresponding load coefficients are obtained asα1 = 0.951 and
α2 = 0.914. Several load patterns can be obtained by assigning several values ofθ2. If the ith
componentsφ1i andφ2i of the two modes have the same sign,tmax is defined as the time at which
r10(t) + r20(t) has the maximum value. However, ifφ1i andφ2i have different signs,r10(t)− r20(t)
is to be maximized. It is desired to rigorously consider the magnitudes ofφ1i andφ2i; however,
only the signs are considered to reduce the necessary number of patterns.

3. ESTIMATION OF INELASTIC RESPONSE BY EQUIVALENT LINEARIZATION

In most of the methods for evaluation of inelastic responses of building frames, the roof dis-
placement and base shear are used as the representative displacement and force. However, for
spatial frames, vertical displacements and forces sometimes dominate over the horizontal ones;
hence, other representative displacement and acceleration should be defined.

Let ui andai denote the vectors of displacements and accelerations at theith step of the pushover
analysis, whereai is obtained by dividing the nodal force by the corresponding nodal mass. The
vectorsui andai are decomposed to the mode components as

ui =

N∑

n=1

ci
unΦn, ai =

N∑

n=1

ci
anΦn (6)

whereci
un andci

an are the coefficients for theith mode that are obtained as

ci
un = ΦT

n Mu i , ci
an = ΦT

n Ma i (7)

Denoting byDi
n and Ai

n the modal displacement and acceleration at theith step of pushover
analysis,ui andai are written as

ui =

N∑

n=1

ΓnDi
nΦn, ai =

N∑

n=1

ΓnAi
nΦn (8)
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Fig.3. An arch model.

From Eqs.(6)–(8), the displacement and acceleration of thenth mode are obtained as

Di
n =

ci
un

ΦT
n MI

, Ai
n =

ci
an

ΦT
n MI

(9)

Hence, considering the orthogonality of modal responses, the representative displacement, ac-
celeration, and the equivalent period at stepi of pushover analysis are obtained as

Di =

√√
N∑

n=1

(Di
n)2, Ai =

√√
N∑

n=1

(Ai
n)2, Teq = 2π

√
Di

Ai
(10)

The energy dissipation due to plastification is considered using the technique of equivalent
linearization. Pushover curve betweenDi andAi are approximated by a bilinear relation with
the displacementDy and accelerationAy when the first plastification occurs. LetDu andAu,
respectively, denote the values ofDi andAi at the intersection point. The equivalent damping
coefficientheq is defined using the plasticity factorµ = Du/Dy as

heq = h0 + κhp
eq = h + κ

2(µ − 1)(1− γ)
πµ(1 + γµ − γ)

(11)

whereh0 is the initial damping coefficient,hp
eq is the equivalent damping coefficient due to plas-

tification, andγ is the stiffness after yielding. The parameterκ is the damping modification
factor in ATC-40 [10], which is defined for Types A, B, and C depending on the ductility of the
structure. The target spectrum is the design acceleration response spectrum for 5% damping
specified by Notification 1461 of the Ministry of Land, Infrastructure and Transport (MLIT),
Japan, corresponding to the performance level of life safety. The amplification factor for the
ground of 2nd rank and the definition of the spectrum reduction factor due to damping in Noti-
fication 1457 of MLIT are used.

The inelastic responses are evaluated as follows using the capacity spectrum approach [8] as
illustrated in Fig. 2:

Step 1: Carry out pushover analysis for each static load pattern to generate the history ofDi

andAi from Eq. (10). Determine the yield point (Dy,Ay) to obtain the bilinear relation.
Step 2: Compute the demand diagramAR at all steps.
Step 3: Find the intersection point that has the smallest difference betweenAi andAR to obtain

the maximum response.
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Fig.4. Eigenmodes of the arch-type truss.

Table 1. Load coefficients for Pattern 1 (maximizer10(t) + r30(t)).
P1-1 P1-2 P1-3 P1-4 P1-5 P1-6 P1-7 P1-8

α1 0.83 0.86 0.88 0.92 0.95 0.98 0.99 1.00

α3 0.26 0.49 0.70 0.77 0.84 0.90 0.98 1.00

Table 2. Load coefficients for Pattern 2 (maximizer10(t) − r30(t)).
P2-1 P2-2 P2-3 P2-4 P2-5 P2-6 P2-7 P2-8

α1 1.00 1.00 0.99 0.97 0.94 0.92 0.88 0.86

α3 −1.00 −0.98 −0.95 −0.91 −0.85 −0.69 −0.61 −0.39

4. NUMERICAL EXAMPLES

4.1 Arch-type Truss Model

Maximum responses of a pin-jointed arch-type truss as shown in Fig. 3 are found for verifica-
tion of the proposed method. The program called FEDEASLab [11] on MATLAB is used for
inelastic static/dynamic response analysis. The arch is subjected to horizontal excitation. The
lower columns also consist of pin-jointed trusses. See Ref. [12] for details of the model. The
design response spectrum is multiplied by the factor 1.25. The damping modification factorκ

is 0.33 assuming Type-C in ATC-40, which does not have enough energy dissipation property.
The initial damping ratio is 2% for the 1st mode. The total strain energy defined in Ref. [9] is
3.22 kN ·m, and the ratios of the modes are 72% for the first, and 26% for the third. Therefore,
we consider the first and third modes in the following

Load coefficients are computed for various phase differences. Since we consider only two
modes, the phase of the first mode can be fixed asθ1 = 0. Eight sets of load coefficients
are found for phase differencesθ3 = 0, π/8, . . . , 7π/8 for maximizing r10(t) + r30(t), which
are denoted by Pattern 1 (P1-1,. . .,P1-8) as listed in Table 1. Eight sets are also found for
maximizingr10(t) − r30(t), which are denoted by Pattern 2 (P2-1,. . .,P2-8) as listed in Table 2.

The maximum responses are found for the displacementsd1, . . . , d5 and the reaction forcesF1,
andF2 indicated in Fig. 3. As is seen from the mode shape in Fig. 4, the horizontal components
of modes 1 and 3 have the same sign; however, the vertical components have different signs.
Therefore, Pattern 1 is used ford1, d2, d3, andF1, while Pattern 2 is used ford4, d5, andF2.

The histories of the mode components of displacements are defined asDn(t) = ΦT
n Mu (t)/Γn.

The result for a spectrum-compatible wave is plotted in Fig. 5. It has been observed that the
components of higher modes increase after a member yields. It has also been confirmed that the
time at which the response takes the maximum is different for each component, which verifies
the necessity of considering several phase differences between the dominant modes.

The inelastic responses are estimated using the load patterns in Tables 1 and 2. The results
are shown in Fig. 6 in comparison to the mean-maximum values by the time-history analysis
for spectrum-compatible 10 seismic motions. As is seen, the inelastic responses have been
estimated with good accuracy. The relation of capacity and demand diagrams for Pattern P2-
8 is plotted in Fig. 7, where the demand diagram can be approximated by a bilinear relation,
and the yield point (Dy,Ay) is defined with the yielding of a member. The predicted ratio of
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Fig.7. Capacity and demand diagrams for
load pattern P2-8.

displacements to the mean value of time-history analysis ford1, d2, d3, d4, andd5 are 1.55, 1.56,
1.56, 1.61, and 1.45, respectively, whereas the ratio of the forcesF1 andF2 are 0.63 and 0.43,
respectively. Therefore, the representative acceleration will be underestimated if the effect of
modes higher than 4th is not incorporated.

The number of yielded members and the plasticity ratio by time-history analysis are 20 and
about 2.0, respectively, for each motion. For the static analysis, the number of yielded members
is 4 for Pattern P1, and 6 for Pattern P2, and the plasticity ratio is about 1.5 for both patterns.
The member connecting the roof and the column first yields for Pattern P1, which results in
drastic degradation of the horizontal load-carrying capacity. However, a chord member in the
region between nodes A and B first yields for Pattern P2, which results in the deformation
without yielding of the column.

4.2 Building Frame Model

Consider next a 3-story 3-dimensional frame model as shown in Fig. 8. OpenSees [13] is used
for analysis. The cross-sectional dimensions are: Column: B-500×500×22, Beam (x-dir.): H-
600×200×9×16, Beam (y-dir.): H-600×200×12×19. The elastic modulus is 2.05× 108 kN/m2,
and the yield stress is 2.35× 105 kN/m2. The thickness of slab in each floor is 0.2 m, and the
mass density is 2.3× 103 kg/m3. The first and second modes dominate inx- andy-directional
motions, respectively. These modes are used for evaluation of the axial force of the corner



Fig.8. A 3-story 3-dimensional frame model.

Table 3. Load coefficientsαn.
P1 P2 P3 P4 P5 P6 P7 P8

α1 1.00 1.00 1.00 0.99 0.98 0.93 0.86 0.78
α2 1.00 1.00 0.99 0.98 0.97 0.91 0.81 0.67

Table 4. Maximum axial forcesF for each pattern and its ratio to the mean valueFTHA =

1057 kN by time-history analysis.
P1 P2 P3 P4 P5 P6 P7 P8

F(kN) 1172 1172 1168 1170 1169 1167 1158 1137

F/FTHA 1.109 1.109 1.105 1.107 1.106 1.104 1.095 1.075

column C in Fig. 8 against the seismic motions corresponding to the design responses spectrum
scaled by 5.0.

The load coefficients for maximizingr10(t) + r20(t) are obtained as shown in Table 3. The
responses inx- andy-directions are denoted by the subscriptsx andy, respectively, andDx, Dy,
Ax, andAy can be computed by pushover analysis for the static load as a combination of the first
and second modes. Then the representative displacement and acceleration are obtained as

Di =

√
(Di

x)2 + (Di
y)2, Ai =

√
(Ai

x)2 + (Ai
y)2 (12)

The demand diagram is also defined as

AR =

√
(AR

x )2 + (AR
y )2 (13)

Table 4 shows the comparison between the results by pushover analysis and time-history anal-
ysis. As can be seen, the inelastic responses are estimated within the accuracy of±10% of
the dynamic responses. The ratio of the standard deviation to the mean value is 0.00857 for
pushover analysis, and 0.03652 for time-history analyses; i.e., the variation of maximum re-
sponses could not be estimated in this case by the pushover analysis. The maximum axial
forces obtained only by the 1st and 2nd modes, respectively, are 690 kN and 918 kN, which
underestimate the results.

5. CONCLUSIONS

A new procedure has been proposed for predicting the maximum inelastic responses of spatial
frames subjected to seismic motions. Since more than one mode dominate in the seismic re-



sponses, the peak modal responses are computed making use of different phase angles for the
sinusoidal modal responses to define several patterns of equivalent static loads as a weighted
sum of the modal loads. The equivalent loads are incorporated into the capacity spectrum
method, which has been extended to account for higher modes, to estimate the peak response
by a series of pushover analyses. New definitions have been presented for representative dis-
placement and acceleration for spatial frames considering higher modes, for which the base
shear and roof displacement that are used for regular building frames cannot be used.

It has been shown in the numerical studies of a long-span arch model that the proposed method
can accurately estimate the maximum inelastic responses within±10% of the mean values ob-
tained by time-history analyses for the spectrum-compatible seismic motions. The deviations
of the dynamic responses can also be estimated by using the proposed method with successive
static pushover analyses. It has also been shown that the maximum axial force of the column
at the corner of a three-dimensional building frame subjected to multi-directional motions can
also be predicted with good accuracy using the proposed method.
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