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ABSTRACT

A new approach is presented for determination of equivalent static seismic loads for evaluat-
ing maximum seismic responses of spatial frames. The responses are estimated by series of
pushover analyses considering possible phaerdnces in the dominant modes. The vibra-

tion modes of the initial elastic structure are used, and the damping due to plastic dissipation
is modeled by equivalent linearization for inelastic systems. The accuracy of the proposed
method is demonstrated in the numerical examples of an arch-type long-span truss and a 3-
story 3-dimensional building frame.

1. INTRODUCTION

In seismic design process of structures, static analysis is commonly adopted to approximately
estimate the maximum responses. For this purpose, there have been numerous studies on de-
velopment of equivalent static loads for building frames consideffifggeof several dominant

modes, usually in the form of modal combination. For inelastic systems, however, the modal
combination rules for elastic systems are not directly applicable. Therefore, several methods for
adaptive force distribution are proposed to follow more closely the time-variant distributions of
inertia forces, so as to provide better prediction [1, 2]. Modal combination rules are also pre-
sented for defining the static loads [3, 4]. Kunnath [5] presented a method to take snapshots of
the deformation at which a response quantity has the maximum value. However, an empirically
estimated combinations of modal ¢heients are used for defining several load patterns.

In these methods for building structures, the base shear and roof displacement are used as repre-
sentative force and displacement, which cannot be used for estimating the vertical responses of
spatial frames. Nakazaved al. [6] presented a method of adaptive modal pushover analysis for
spatial frames. Katet al.[7] applied multi-modal pushover analysis to reticulated domes. In

this study, we present a general approach to define several load patterns using the elastic eigen-
modes and response spectra. A new definition is proposed for the representative displacement
and acceleration that is applicable to spatial frames. The variation of the maximum responses
are successfully evaluated by static pushover analyses of several times.
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2. MODAL LOAD COEFFICIENTS

Let ®@,, denote thenth mode of undamped free vibration. The vector in which the components
corresponding to the input direction are 1, and the remaining components are 0 is denoted by
The participation factor,, and the equivalent ma$g, of the nth mode are defined as

[h=® M, M,=(,)> (1)

whereM is the mass matrix, and, is orthonormalized byp,’ M ®; = ¢;; with the Kronecker

deltag;;. Letf,, denote the static load vector corresponding torttiemode. We assume, for
simplicity, thatN modes from 1st tdNth are used. The static seismic lofds defined as a
linear combination of o with the codficienta, as

N N
fo = Z anfro = Z anrnsa(wn)M D, (2)
n=1 n=1

whereS,(wy) is the value of the acceleration response spec8(a) corresponding to theth
mode, andoy, is thenth natural circular frequency.

If damping is not very large, the deformation at which a displacement component takes the
maximum can be found by applying the inertia foréem Eq. (2) statically to obtain the max-
imum displacement. Therefore, the process of finding the maximum displacement is reduced
to that of determining the céiécientsa, for the seismic load vector. Suppose the component

of moden makes a sinusoidal response in full scale around the time instance of maximum re-
sponse of an particular displacement component. Then the respgfisef the nth mode with

the amplitudd ', Sa(wn)/w? and the phase anghg is given as

o) = 2 sin ot — ) 3)

n

Supposé, is distributed randomly in the interval [@r], and consider the case where the max-
imum response is to be found for thh displacement component. Then define the sg(th of



rno(t) as
N
rolt) = ) Sign@n)roo(t) @)
n=1

where signg,;) is the sign of theth component of®,. Let tox denote the time at which
ro(t) takes the maximum absolute value. Then theffbtenta,, at ta is adopted as the load
codficient:

an = SiN(wntmax — 6n) (5)

where the maximum value is computed in the half period of the most dominant mode.

For example, suppose the modes 1 and 2 dominate, and we find tfieieatsa; anda, as
illustrated in Fig. 1. The amplitudes of the two modes are assumédSaéw)/w? = 2.0,
FZSa(wz)/a)g = 1.0. The natural periods arerfw; = 2.0 secand Zr/w, = 1.0 sec, and the
phase angles a® = 0 andd, = /6. As is seenro(t) + ryo(t) takes the maximum value at
t = tmax = 0.4 sec, and the corresponding load ¢beients are obtained ag = 0.951 and
ap = 0.914. Several load patterns can be obtained by assigning several valiyedfdhe ith
componentg;; andg,; of the two modes have the same sigyfa, is defined as the time at which
rio(t) + roo(t) has the maximum value. Howevergfi andg, have diterent signsto(t) — roo(t)

Is to be maximized. It is desired to rigorously consider the magnitudeg ahdg¢,;; however,
only the signs are considered to reduce the necessary number of patterns.

3. ESTIMATION OF INELASTIC RESPONSE BY EQUIVALENT LINEARIZATION

In most of the methods for evaluation of inelastic responses of building frames, the roof dis-
placement and base shear are used as the representative displacement and force. However, for
spatial frames, vertical displacements and forces sometimes dominate over the horizontal ones;
hence, other representative displacement and acceleration should be defined.

Letu' anda' denote the vectors of displacements and accelerationsish tep of the pushover
analysis, whera! is obtained by dividing the nodal force by the corresponding nodal mass. The
vectorsu' anda' are decomposed to the mode components as

N N
u' = Z c,®n a = Z c @, (6)
n=1 n=1

wherec!,, andc.,, are the cofficients for theth mode that are obtained as

Cn = PIMU', Cyy = BIM (7)

Denoting byD!. and Al the modal displacement and acceleration atithestep of pushover
analysisu' anda' are written as

N N
u'= > TDjd, d = Z;FnA'nfbn (8)
n=

n=1
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Fig.3. An arch model.

From Egs.(6)—(8), the displacement and acceleration dfitthenode are obtained as
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(9)

Hence, considering the orthogonality of modal responses, the representative displacement, ac-
celeration, and the equivalent period at steppushover analysis are obtained as

N N i
DO A= YA Teq:sz% (10)
n=1 n=1

The energy dissipation due to plastification is considered using the technique of equivalent
linearization. Pushover curve betweBhandA' are approximated by a bilinear relation with

the displacemenb, and acceleratio®, when the first plastification occurs. LB, andA,,
respectively, denote the valuesDf and A at the intersection point. The equivalent damping
codficienthg is defined using the plasticity factor= D,/Dy as

2-1)1-v)
(1 +yu —y)

heq = ho + kB = h+ (11)

wherehy is the initial damping cofﬁcient,hgq is the equivalent damping cfircient due to plas-
tification, andy is the stitness after yielding. The parameters the damping modification

factor in ATC-40 [10], which is defined for Types A, B, and C depending on the ductility of the
structure. The target spectrum is the design acceleration response spectrum for 5% damping
specified by Notification 1461 of the Ministry of Land, Infrastructure and Transport (MLIT),
Japan, corresponding to the performance level of life safety. The amplification factor for the
ground of 2nd rank and the definition of the spectrum reduction factor due to damping in Noti-
fication 1457 of MLIT are used.

The inelastic responses are evaluated as follows using the capacity spectrum approach [8] as
illustrated in Fig. 2:

Step 1: Carry out pushover analysis for each static load pattern to generate the his@ry of
andA' from Eq. (10). Determine the yield poinb(, A;) to obtain the bilinear relation.

Step 2: Compute the demand diagrahf at all steps.

Step 3: Find the intersection point that has the smallefedénce betweeA' andAR to obtain
the maximum response.
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Fig.4. Eigenmodes of the arch-type truss.

Table 1. Load cofécients for Pattern 1 (maximizgg(t) + rzo(t)).
P1-1 P1-2 P13 P14 P15 P1-6 P1l-7 P18
a; | 0.83 086 088 092 095 098 099 1.00
a3 | 026 049 070 077 084 090 098 1.00

Table 2. Load cofcients for Pattern 2 (maximizgg(t) — rq(t)).
P2-1 pP2-2 P2-3 P2-4 P2-5 P2-6 pP2-7 P2-8

a1 1.00 1.00 0.99 0.97 0.94 0.92 0.88 0.86

a3 | -1.00 -098 -095 -091 -0.85 -0.69 -0.61 -0.39

4. NUMERICAL EXAMPLES
4.1 Arch-type Truss Model

Maximum responses of a pin-jointed arch-type truss as shown in Fig. 3 are found for verifica-
tion of the proposed method. The program called FEDEASLab [11] on MATLAB is used for
inelastic statidynamic response analysis. The arch is subjected to horizontal excitation. The
lower columns also consist of pin-jointed trusses. See Ref. [12] for details of the model. The
design response spectrum is multiplied by the factor 1.25. The damping modificationkfactor
Is 0.33 assuming Type-C in ATC-40, which does not have enough energy dissipation property.
The initial damping ratio is 2% for the 1st mode. The total strain energy defined in Ref. [9] is
3.22 kN- m, and the ratios of the modes are 72% for the first, and 26% for the third. Therefore,
we consider the first and third modes in the following

Load codficients are computed for various phaséetences. Since we consider only two
modes, the phase of the first mode can be fixed,as 0. Eight sets of load cdgcients
are found for phase flerencesds = 0,7/8,...,7x/8 for maximizingrio(t) + rzo(t), which

are denoted by Pattern 1 (P1-1,P1-8) as listed in Table 1. Eight sets are also found for
maximizingro(t) — rso(t), which are denoted by Pattern 2 (P2:1,P2-8) as listed in Table 2.

The maximum responses are found for the displacentgnts. , ds and the reaction forcds,,

andF; indicated in Fig. 3. As is seen from the mode shape in Fig. 4, the horizontal components
of modes 1 and 3 have the same sign; however, the vertical components fiakentisigns.
Therefore, Pattern 1 is used foy, d,, d3, andF4, while Pattern 2 is used fal;, ds, andF,.

The histories of the mode components of displacements are defirf@g{tas= ® Mu (t)/T,.

The result for a spectrum-compatible wave is plotted in Fig. 5. It has been observed that the
components of higher modes increase after a member yields. It has also been confirmed that the
time at which the response takes the maximumfiecent for each component, which verifies

the necessity of considering several phasietences between the dominant modes.

The inelastic responses are estimated using the load patterns in Tables 1 and 2. The results
are shown in Fig. 6 in comparison to the mean-maximum values by the time-history analysis
for spectrum-compatible 10 seismic motions. As is seen, the inelastic responses have been
estimated with good accuracy. The relation of capacity and demand diagrams for Pattern P2-
8 is plotted in Fig. 7, where the demand diagram can be approximated by a bilinear relation,
and the yield point@,, A)) is defined with the yielding of a member. The predicted ratio of
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Fig.5. Time histories of modal responses.
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Fig.6. Ratios of mean and messtandard Fig.7. Capacity and demand diagrams for
deviation of the inelasic responses obtainebbad pattern P2-8.

by pushover analysis to the mean value by

dynamic analyses.

displacements to the mean value of time-history analysidfai,, ds, d4, andds are 1.55, 1.56,
1.56, 1.61, and 1.45, respectively, whereas the ratio of the fércasdF, are 0.63 and 0.43,
respectively. Therefore, the representative acceleration will be underestimated fifettteoé

modes higher than 4th is not incorporated.

The number of yielded members and the plasticity ratio by time-history analysis are 20 and

about 2.0, respectively, for each motion. For the static analysis, the number of yielded members
is 4 for Pattern P1, and 6 for Pattern P2, and the plasticity ratio is about 1.5 for both patterns.
The member connecting the roof and the column first yields for Pattern P1, which results in

drastic degradation of the horizontal load-carrying capacity. However, a chord member in the

region between nodes A and B first yields for Pattern P2, which results in the deformation

without yielding of the column.

4.2 Building Frame Model

Consider next a 3-story 3-dimensional frame model as shown in Fig. 8. OpenSees [13] is used
for analysis. The cross-sectional dimensions are: Column: B500<22, Beam x-dir.): H-
600x200x9x16, Beam y-dir.): H-600x200x12x19. The elastic modulus is@x 10° kN/m?,

and the yield stress is35 x 10° kN/m?. The thickness of slab in each floor i20m, and the

mass density is.3 x 10° kg/m®. The first and second modes dominate«irandy-directional
motions, respectively. These modes are used for evaluation of the axial force of the corner
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Fig.8. A 3-story 3-dimensional frame model.

Table 3. Load coficientsay,.
PL P2 P3 P4 P5 P6 P7 P8
a; | 1.00 1.00 1.00 0.99 098 093 086 0.78
a, | 1.00 1.00 099 098 097 091 081 0.67

Table 4. Maximum axial force§ for each pattern and its ratio to the mean valkygs =

1057 kN by time-history analysis.

P1 P2 P3 P4 P5 P6 P7 P8
F(kN) 1172 1172 1168 1170 1169 1167 1158 1137
F/Fthua | 1.109 1.109 1.105 1.107 1106 1.104 1.095 1.075

column C in Fig. 8 against the seismic motions corresponding to the design responses spectrum
scaled by 5.0.

The load co#ficients for maximizingrig(t) + roo(t) are obtained as shown in Table 3. The
responses ix- andy-directions are denoted by the subscriptndy, respectively, an,, Dy,

A, andA, can be computed by pushover analysis for the static load as a combination of the first
and second modes. Then the representative displacement and acceleration are obtained as

D'= /(D)2 + (D})2, A = (J(A)?+ (A))? (12)

The demand diagram is also defined as
AR = J(AR)? + (AR)? (13)

Table 4 shows the comparison between the results by pushover analysis and time-history anal-
ysis. As can be seen, the inelastic responses are estimated within the accurd©®pw@bf

the dynamic responses. The ratio of the standard deviation to the mean value is 0.00857 for
pushover analysis, and 0.03652 for time-history analyses; i.e., the variation of maximum re-
sponses could not be estimated in this case by the pushover analysis. The maximum axial
forces obtained only by the 1st and 2nd modes, respectively, are 690 kN and 918 kN, which
underestimate the results.

5. CONCLUSIONS

A new procedure has been proposed for predicting the maximum inelastic responses of spatial
frames subjected to seismic motions. Since more than one mode dominate in the seismic re-



sponses, the peak modal responses are computed making uffer@diphase angles for the
sinusoidal modal responses to define several patterns of equivalent static loads as a weighted
sum of the modal loads. The equivalent loads are incorporated into the capacity spectrum
method, which has been extended to account for higher modes, to estimate the peak response
by a series of pushover analyses. New definitions have been presented for representative dis-
placement and acceleration for spatial frames considering higher modes, for which the base
shear and roof displacement that are used for regular building frames cannot be used.

It has been shown in the numerical studies of a long-span arch model that the proposed method
can accurately estimate the maximum inelastic responses wiill#6 of the mean values ob-

tained by time-history analyses for the spectrum-compatible seismic motions. The deviations
of the dynamic responses can also be estimated by using the proposed method with successive
static pushover analyses. It has also been shown that the maximum axial force of the column
at the corner of a three-dimensional building frame subjected to multi-directional motions can
also be predicted with good accuracy using the proposed method.
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