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ABSTRACT
This study shows that using symmetry can be of great benefit in an investigation of the stability
of tensegrity structures: we are able to find the general super stability condition for a class of
structures with the same type of symmetry. In the study, we are focusing on the prismatic as well
as star tensegrity structures, both classes of structures are of dihedral symmetry. Making use of
their symmetry properties, the force density matrix can be analytically transformed into block-
diagonal form, where the sub-matrices in the leading diagonal are independent. Positive semi-
definiteness of the force density matrix, which is the necessary condition for super stability,
can then be easily verified by considering the sub-matrices instead of the original matrix. This
enables us to find the super stability conditions for prismatic and star structures: a prismatic
tensegrity structure is super stable if and only if its horizontal cables are connected to adjacent
nodes; and a star structure is super stable if and only if it consists of odd numbers of struts,
while the struts are as close to each other as possible.

1. INTRODUCTION
In this study, we investigate super stability of prismatic and ‘star’ tensegrity structures, that
are of dihedral symmetry. A super stable structure is guaranteed to be stable (having locally
isolated minimum of strain energy), for any level of self-stress and any material properties, as
long as every member has a positive ‘modified’ axial stiffness [1]. The simplest examples of
prismatic and star structures are shown in Fig. 1. There is a clear link between these two classes
of structures: the horizontal cables in each of the two parallel circles containing the nodes in a
prismatic structure are replaced by a star of cables in a star structure, with a new centre node.
Indeed, we shall see that the equilibrium positions of the nodes, and self-stress forces in the
vertical cables and the struts, are identical in both structures.

The prismatic structure has at least one non-rigid-body infinitesimal mechanism, resulting from
the existence of the self-stress mode. However, the star structure has many more infinitesi-
mal mechanisms: at each of the boundary nodes, a strut is in equilibrium with two cables, all



of which must therefore lie in a plane; thus, out-of-plane movement of the node must be an
infinitesimal mechanism, and there are at least six infinitesimal mechanisms—in fact there is
another infinitesimal mechanism corresponding to the self-stress mode. In spite of the existence
of infinitesimal mechanisms, we will show that many prismatic and star tensegrity structures are
super stable if particular conditions are satisfied.

As will be discussed later, super stability of a tensegrity structure is related to the positive semi-
definiteness of the force density matrix (sometimes called the ‘small’ stress matrix, for example
in [1]). The super stability condition for prismatic structures has been obtained in [2] making
use of the special properties of the force density matrix as a circulant matrix. In this study, we
present another systematic way to analytically block-diagonalise the force density matrix into
sub-matrices of only one or two dimensions, making use of their dihedral symmetry. Using the
same methodology, we further prove that a star structure is super stable as long as it is composed
of odd number of struts and the struts are closest to each other.

Following this introduction, the paper is organized as follows: Section 2 uses the symmetry
of a structure to find its self-stress forces in the state of self-equilibrium. Section 3 block-
diagonalises the force density matrix and finds the condition for super stability of the prismatic
and star structures. Section 4 briefly concludes the study.

2. SYMMETRY AND SYMMETRY AND SELF-STRESS FORCES

In this section, we introduce the connectivity and geometry of a structure with dihedral sym-
metry, and find the self-stress forces that equilibrate every node. The dihedral symmetry allows
us to calculate symmetric state of self-stress by considering the equilibrium equations of only
representative nodes.

2.1 Symmetry

We are considering prismatic and star tensegrity structures that have dihedral symmetry, denoted
Dn (in the Schoenflies notation): there is a single major n-fold rotation (Ci

n) axis, which we
assume is the vertical, z-axis, and n 2-fold rotation (C2, j) axes perpendicular to this major axis.
In total there are 2n symmetry operations. A structure has the same appearance before and after
the transformation by applying any of these symmetry operations.

Consider a specific set of elements (nodes or members) of a structure with symmetry G. If one
element in a set can be transformed to all of the other elements of that set by the symmetry
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Fig.1. Tensegrity structures that are of the same dihedral symmetry D3. The thick lines represent
struts, and the thin lines represent cables. The horizontal cables in the prismatic structure are
replaced by the radial cables connected to centre nodes in the star structure.
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Fig.2. The tensegrity structures with dihedral symmetry D4. R and H are the radius of the circle
of boundary nodes and height of the structure, respectively.
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Fig.3. The nodal numbering of two example structures with dihedral symmetry D5.

operations in G, then this set of elements are said to belong to the same orbit. A structure can
have several different orbits of elements.

In contrast to prismatic structures, which have only one orbit of nodes, there are two orbits of
nodes in star structures—boundary nodes and centre nodes, as shown in Fig. 1. Thus, there are
in total 2n nodes in a prismatic structure and 2n + 2 nodes in a star structure. All the nodes are
at z = ±H/2 as shown in Fig. 2.

There are three orbits of members in a prismatic structure: horizontal cables, vertical cables and
struts; and there are also three orbits of members in a star structure: instead of the horizontal
cables, it has radial cables connected to the centre nodes. The members in each orbit have the
same length and self-stress force, and therefore, the same force density, defined as ratio of self-
stress force to member length. There are 2n horizontal cables in a prismatic structure and 2n
radial cables, in a star structure, and n vertical cables and n struts in both.

2.2 Connectivity
The connectivities of prismatic and star structures are almost the same, except for those of hori-
zontal cables and radial cables. By fixing the connectivity of struts, we use the notations Dh,v

n and
Dv

n to describe the connectivity of a prismatic and a star structures with Dn symmetry, respec-
tively. h and v here respectively denote the connectivity of the horizontal and vertical cables.
The boundary nodes in the upper and lower circles are respectively numbered as N0,N1 . . . ,Nn−1

and Nn,Nn+1 . . . ,N2n−1, and the upper and lower centre nodes in the star structure are respec-
tively numbered as N2n and N2n+1. We describe the connectivity of a reference node N0 as
follows — all other connections are then defined by the symmetry.
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Fig.4. All nodes connected to a reference node N0 of the prismatic structure D2,1
8 . The three

cable forces, fh, fn−h and fv are all tensile, and have a positive magnitude; the strut force fs is
compressive, and has a negative magnitude.

1. Without loss of generality, we assume that a strut connects node N0 in the top plane to
node Nn in the bottom plane.

2. A vertical cable connects node N0 in the top plane to node Nn+v in the bottom plane. We
restrict 1 ≤ v ≤ n/2 (choosing n/2 ≤ v ≤ n would give essentially the same set of
structures, but in left-handed versions).

3. For the prismatic structure, a horizontal cable connects node N0 to node Nh: symmetry
also implies that a horizontal cable must also connect node N0 to node Nn−h. We restrict
1 ≤ h ≤ n/2.

4. For the star structure, a radial cable in the upper circle connects node N0 to the centre node
N2n, and a radial cable in the lower circle connects node Nn to the centre node N2n+1.

Fig. 3 shows the connectivities of the prismatic structure D2,2
5 and star structure D2

5.

2.3 Symmetric State of Self-stress Forces
Because of the high symmetry, we only need to consider the equilibrium of one reference node
from each orbit, to find the symmetric state of self-stress forces. Thus we consider the equi-
librium of one boundary node for prismatic structures, and one boundary and one centre node
for star structures, in the absence of external forces. The force densities of the strut, vertical,
horizontal and radial cables are respectively denoted as qs, qv, qh and qr.

2.3.1 Self-stresses of prismatic structures

Consider first the boundary nodes of a prismatic structure. Take one of them, for example
node N0 in the upper circle, see for example Fig. 4, as the reference node and let x0 denote its
coordinates. The coordinates of the two boundary nodes in the upper circle, connected to the
reference node by horizontal cables are denoted by xh and xn−h, and those in the lower circle by
strut and vertical cable are respectively denoted by xs and xv.

When no external load is applied, the node N0 should be equilibrated by the axial force vectors
fh, fn−h, fv and fs of the cables and a strut as shown in Fig. 4, i.e.,

fh + fn−h + fs + fv = 0, (1)

where
fh = qh(xh − x0), fn−h = qh(xn−h − x0),
fs = qs(xs − x0), fv = qv(xv − x0).

(2)



Since all the boundary nodes belong to the same orbit, the coordinates of all other nodes can
be obtained by a proper rotation matrix with the reference node. Hence, the self-equilibrium
equation Eq. (1) can be assembled as follows with respect to x0

S̃xyzx0 = 0. (3)

S̃xyz is a block-diagonal matrix constructed from a 2-by-2 and a 1-by-1 sub-matrices on its lead-
ing diagonal. Both of these sub-matrices should be singular to allow the solution of Eq. (3) to
give the position vector x0 of the reference node with non-trivial coordinates in three-dimensional
space. Therefore, we have

qv = −qs and
qh

qv
= t =

√
2 − 2Cv

2(1 −Ch)
. (4)

2.3.2 Self-stresses of star structures

The self-stress forces of a star structure can be derived in a similar way as for the prismatic
structure, except that we need to consider also the centre node, coordinates of which are denoted
by xc, and the radial cables, force density of which is denoted by qr.

The equilibrium of the reference node, in the absence of external force, is

qs(xs − x0) + qv(xv − x0) + qr(xc − x0) = 0, (5)

which can be rewritten as
Ēx0 + qrxc = 0. (6)

Ensuring non-trivial solutions for x0 leads to

qv = −qs, and
qr

qv
=

√
2(1 −Cv). (7)

Thus we have found force densities in the members that allow the star structure to be in self-
equilibrium — equilibrium of the centre nodes is automatically satisfied. Note that the force
density of vertical cables is identical to that of the prismatic structures.

3. SUPER STABILITY

In this section, we will find the stability conditions for prismatic and star structures. The force
density matrix is critical to super stability of a tensegrity structure, and it can be studied in
a much easier way making use of symmetry properties of the structures, as is shown in this
section.

3.1 Force Density Matrix

The force density matrix E (∈ <2n×2n for a prismatic structure and ∈ <(2n+2)×(2n+2) for a star
structure) is a symmetric matrix, defined by the force densities: Let I denote the set of members



connected to free node i, the (i, j)-component E(i, j) of E is given as

E(i, j) =



∑
k∈I

qk for i = j,

−qk if nodes i and j are connected by member k,
0 if nodes i and j are not connected,

(8)

where qk denotes the force density of member k.

The sufficient conditions for super stability of a tensegrity structure are ([3, 4])

1. The force density matrix has the minimum rank deficiency of four for a three-dimensional
structure;

2. The force density matrix is positive semi-definite;
3. The member directions do not lie on a conic at infinity [3], or equivalently, the geometry

matrix is full-rank [4].

Note that the first condition is also the necessary condition for non-degenerate structures [5],
and the last condition is also the necessary condition for stable structures (with locally minimum
strain energy). These two conditions are usually satisfied, and therefore, the second condition
becomes crucial to super stability of a tensegrity structure.

One way of considering positive-definiteness of a matrix is to look at the signs of its eigenval-
ues: the force density matrix is positive semi-definite if all eigenvalues are equal to or greater
than zero. Size of the force density matrix is proportional to the number of nodes, hence,
verification of positive semi-definiteness of the matrix becomes difficult for the structures hav-
ing large number of nodes, by applying conventional numerical methods such as eigenvalue
analysis. Fortunately, the dihedral symmetry of the structures can be systematically utilized
to analytically block-diagonalise the force density matrix into sub-matrices of only one or two
dimensions as follows

Ẽ =



ẼA1

ẼA2

(ẼB1) O
(ẼB2)

ẼE1

ẼE1

O . . .

ẼEp

ẼEp



, (9)

where p = (n − 1)/2 for n odd and p = (n − 2)/2 for n even, and A1, A2, B1 and B2 refer
to the one-dimensional representations in dihedral group, and Ek refer to the two-dimensional
representations ([6, 7]). ẼA1 and ẼA2 are 1-by-1 matrices for the prismatic structure, and 2-by-2
matrices for star structure due to the existence of the centre nodes. The dimensions of other
sub-matrices Ẽµ are identical to those of the corresponding representations µ.

The sub-matrices for a prismatic structure are given as (see [8] for details)

Ẽµ = qRµ
0 − qhRµ

h − qhRµ
n−h − qsRµ

n − qvRµ
n+v, (10)



and for a star structure (see [9] for details)

Ẽµ = qRµ
0 − qrRµ

r − qsRµ
n − qvRµ

n+v, (11)

where Ri is the i-th irreducible representation matrix [6].

The number of sub-matrices corresponding to two-dimensional representations Ek increases
along with the number of nodes, while the number of other sub-matrices will not change respec-
tively for n odd or even. Therefore, we will only focus on the sub-matrices ẼEk corresponding
to the two-dimensional representations Ek for the presentation of super stability condition.

3.2 Super Stability of Prismatic Structures

According to Eq. (10), ẼEk (k = 1, . . . , p) of a prismatic structure Dh,v
n corresponding to the

two-dimensional representations Ek are

1
qv

ẼEk =

[
2t(1 −Chk) + 1 −Cvk −S vk

−S vk 2t(1 −Chk) − (1 −Cvk)

]
, (12)

where Cvk and S vk denote cos(2vkπ/n) and sin(2vkπ/n), respectively. The same formulation
was derived in [2] making use of the special properties of the force density matrix as a circulant
matrix. The eigenvalues of ẼEk are then calculated as

1
qv
λEk

1 = 2t(1 −Chk) +
√

2(1 −Cvk) > 0, 1
qv
λEk

2 = 2t(1 −Chk) −
√

2(1 −Cvk). (13)

λEk
1 > 0 holds since t > 0, 1 − Chk > 0 and 1 − Cvk > 0. For representation E1, we know from

Eq. (4) that λE1
2 = 0. To satisfy positive semi-definiteness and minimum rank deficiency of the

force density matrix, λEk
2 for k > 1 should be positive, for which it has been proved in [2] that

this can be true if and only if h = 1; i.e., horizontal cables are connected to adjacent nodes.

3.3 Super Stability of Star Structures

According to Eq. (11), the sub-matrices ẼEk (k = 1, . . . , p) of a star structure Dv
n corresponding

to the two-dimensional representations Ek are given as

ẼEk =

[
qr + qv(1 −Ckv) −qvS kv

−qvS kv qr − qv(1 −Ckv)

]
, (14)

the two eigenvalues of which are

1
qv
λEk

1 =
√

2(1 −Cv) +
√

2(1 −Ckv) > 0, 1
qv
λEk

2 =
√

2(1 −Cv) −
√

2(1 −Ckv). (15)

For k = 1, we have λE1
2 = 0 as expected for the equilibrium condition. Thus, for n = 3 where

k > 1 does not exist, the dihedral star tensegrity structure is super stable.

For n > 4, we must consider ẼEk for k > 1. For a super stable tensegrity structure, ẼEk for all
1 < k ≤ p must be positive definite; i.e., λEk

2 must be positive; and hence, we require

Ckv > Cv, for all 1 < k ≤ (n − 1)/2. (16)



Referring to [9], we have the following relation to ensure that the relation in Eq. (16) holds

v =
n − 1

2
. (17)

In other words, a dihedral star tensegrity structure is super stable if and only if it has odd number
of struts (n odd), and the struts are as close to each other as possible (v = (n − 1)/2).

4. DISCUSSION

In this study, we have shown the possibility of finding super stability condition for a whole class
of structures, using their high symmetry. In particular, we have concentrated on prismatic and
star tensegrity structures with dihedral symmetry:

• A prismatic structure is super stability as long as its horizontal cables are connected to the
adjacent nodes;
• A star structure is super stable if and only if they have odd number of struts, while the

struts are as close to each other as possible.

The methodology discussed in the study is also applicable to the structures with other point
group symmetry.
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