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ABSTRACT

A new approach is proposed for shape optimization of shell structures, where requirements on

the aesthetic aspect and the constructability as well as the structural rationality are simultane-

ously considered in the problem formulation. The surface shape is modeled using a tensor-

product B́ezier surface to reduce the number of variables, while the ability to generate moder-

ately complex shape is maintained. The strain energy is used to represent the mechanical per-

formance, and the aesthetic properties and smoothness of the surface are quantified by algebraic

invariants of the surface. The condition of the developable surface is ensured by incorporating

the constraints on the principal curvature. The effectiveness of the present approach is confirmed

through several numerical examples, and the characteristics of the results are discussed.

1. INTRODUCTION

Advancement of computer technologies as well as the developments of structural materials and

construction methods enabled us to design so calledfree-form shell, which has complex shape

and topology that cannot be categorized to traditional shapes. However, the mechanical behav-

ior of such shell is very complicated, and it is very difficult for a designer to decide feasible

shape of a real-world structure based on his/her experience and intuition as a compromise of

aesthetical property and mechanical rationality. Furthermore, it is very important in practi-

cal design that the smoothness of the shape should be maintained while moderately complex

geomerty is searched. In this respect, qualitative measures for defining roundness may be ef-

fectively utilized1, 2). However, there are other measures of smoothness to be considered by the

designers.

In this study, a new approach is proposed for shape optimization of shells modeled using Bézier



surface. The strain energy is used to represent the mechanical performance, and the aesthetic

aspects and smoothness of the surface are quantified by algebraic invariants of the surface repre-

senting curvature, convexity, gradient, etc. The condition of the developable surface is ensured

by incorporating the constraints on the principal curvature.

2. SHAPE REPRESENTATION BY BÉZIER SURFACE

The number of variables for optimization can be drastically reduced without sacrificing smooth-

ness and complexity of the surface using the Bézier surface. Moreover, the basis functions of

Bézier surface can be expressed explicity with respect to the coordinates of the control points,

which enables us to carry out sensitivity analysis of the algebraic invariants analytically. The

point SI ,J(s, t) = [x(s, t), y(s, t), z(s, t)]> on a tensor product B́ezier surface is defined with pa-

rameterss, t ∈ [0,1] as

SI ,J(s, t) =

I∑

i=0

J∑

j=0

qi j BI ,i(s)BJ, j(t) (1)

whereqi j = [qx,i j ,qy,i j ,qz,i j ]> is the control point, andBI ,i(s) andBJ, j(t) are the Bernstein basis

functions.I andJ are the orders of the functions. The vector ofx-coordinates of control points

is defined as

qx =
[
qx,00, · · · ,qx,0J, · · · ,qx,I0, · · · ,qx,IJ

]> (2)

qy andqz are defined similarly.

In order to evaluate the static responses of the shells using finite element method, we divide the

surface of (1) intoI ′ × J′ grid with uniformly spaced parameterst ands, respectively, and the

vectorrx of thex-coordinates of the nodes is defined as

rx = [x(s0, t0), · · · , x(s0, tI ′), · · · , x(sI ′ , t0), · · · , x(sI ′ , tJ′)]
> (3)

ry andrz are defined similarly. The coordinate vector of a node on the surface can be written as

follows:

SI ,J(sk, tl) =

I∑

i=0

J∑

j=0

qi j BI ,i(sk)BJ, j(tl), (k = 0, · · · , I ′; l = 0, · · · , J′) (4)

3.β INVARIANTS AND γ INVARIANTS

We use the six algebraic invariantsβ0, β1, β2, γ1, γ2, andγ3 proposed by Iriet al. 3) for rep-

resenting the geographical propeties. Here, we regardz(s, t) of the B́ezier surface (1) as the

altitude of the geographical representation.

3.1 Definitions of tensors and vectors

In the following, the covariant and the contravariant components are indicated by the subscript

and superscript, respectively. The components of the covariant gradient vectorz, the covariant

hessianh, and the covariant metric tensorg are defiend

z =

[
zs

zt

]
, h =

[
hss hst

hts htt

]
, g =

[
gss gst

gts gtt

]
(5)



which are obtained from

zs =
∂z(s, t)
∂s

=

I∑

i=0

J∑

j=0

qz,i j
∂BI ,i(s)
∂s

BJ, j(t), zt =
∂z(s, t)
∂t

=

I∑

i=0

J∑

j=0

qz,i j BI ,i(s)
∂BJ, j(t)

∂t
(6)

hss =
∂2z(s, t)
∂s2

=

I∑

i=0

J∑

j=0

qz,i j
∂2BI ,i(s)
∂s2

BJ, j(t), htt =
∂2z(s, t)
∂t2

=

I∑

i=0

J∑

j=0

qz,i j BI ,i(s)
∂2BJ, j(t)

∂t2

hst = hts =
∂2z(s, t)
∂s∂t

=

I∑

i=1

J∑

j=1

qz,i j
∂BI ,i(s)
∂s

∂BJ, j(t)

∂t

(7)

gss =
∂SI ,J(s, t)

∂s

>∂SI ,J(s, t)
∂s

, gtt =
∂SI ,J(s, t)

∂t

>∂SI ,J(s, t)
∂t

gst = gts =
∂SI ,J(s, t)

∂s

>∂SI ,J(s, t)
∂t

(8)

Let zandg denote the contravariant gradient vector ofz-coordinate and the contravariant metric

tensor, respectively. Then the following relations holds:

g = g−1, z = gz, z = gz (9)

In addition, we define the following contravariant vectorz̃:

z̃ =

[
z̃s

z̃t

]
= Ẽz, Ẽ =

[
Ẽ11 Ẽ12

Ẽ21 Ẽ22

]
=

[
0 1
−1 0

]
(10)

The product of a covariant vector and a contravariant vector, and the bilinear form with respect

to a second-order covariant/contravariant tensor and a conrtavariant/cobariant vector are invari-

ant with respect to the definition of the parameter of the surface. Then,β andγ invariants are

defined as follows:

β0 =
∑

ξ=s,t

∑

λ=s,t

gξλzξzλ =
∑

ξ=s,t

zξzξ (≥ 0) (11) γ1 =
∑

λ=s,t

∑

ξ=s,t

hλξz
ξzλ (14)

β1 =
∑

ξ=s,t

∑

λ=s,t

hλξg
ξλ (12) γ2 =

∑

λ=s,t

∑

ξ=s,t

hλξz̃
ξzλ =

∑

λ=s,t

∑

ξ=s,t

hλξz
ξz̃λ (15)

β2 =
1

2det(g)

∑

ξ=s,t

∑

λ=s,t

∑

µ=s,t

∑

ν=s,t

hνλhµξẼ
ξλẼµν (13) γ3 =

1
det(g)

∑

λ=s,t

∑

ξ=s,t

hλξz̃
ξz̃λ (16)

3.2 SURFACE PROPERIES BASED ON ALGEBRAIC INVARIANTS

The six algebraic invariantsβ0, β1, β2, γ1, γ2, andγ3, defined using the vectors and tensors given

in Sec.3.1, are used for quantitative evaluation of the surface properties. The local properties in

the neighborhood of a point P on the surface are characterized by the invariants as follows:

β2 > 0 The contours in the neighbourhood of P are coaxial (part of) similar ellipses. Especially,

whenβ2
1 = 4β2, the contours are (part of) concentric circles and the surface is locally

isotropically curved. The shape is locally concave ifβ1 > 0, and locally convex ifβ1 < 0.



β2 < 0 The contours in the neighbourhood of P are (part of) coaxial hyperbolas. Locally, the

surface is convex in some directions and concave in others. There are special directions

in which the contour lines are straight (i.e., neither concave nor convex).

β2 = 0 One of the principal curvatures is 0. Furthermore, the other principal curvature is posi-

tive if β1 > 0; and negative ifβ1 < 0; and 0 ifβ1 = 0 that means a locally flat surface.

β0 = 0 P is a critical point (locally maximum/minimum value ofz-coordinate).

γ2 = 0 Direction of gradient vector coincides with one of the principal direction, and the surface

near P is locally cylindrical and concave in one principal direction if|γ1| < |γ3| and

|γ3 = 0|; wheras it is locally cylindrical and convex in one principal direction if|γ1| > |γ3|
and|γ3 = 0|.

In addition,β1 andβ2 correspond to the twice the average curvature and the Gaussian curvature,

respectively. Furthermore,γ1/β0 is the curvature in the steepect desent direction, andγ3/β0 is

the curvature in its perpendicular direction.

In view of constructability, it is desirable that the surface can be developed to a plane without

expansion or contraction. Such surface is called developable surface, which is characterized

by vanishing Gaussian curvature. Therefore, to generate a developable surface, the constraint

β2 = 0 should be satisfied at any point on the surface.

4. NUMERICAL EXAMPLES

4.1 Sescription of shell model and optimization problem

The shape of the shell structure that has the square plane as shown in Fig.1(a) is optimized con-

sidering the algebraic invariants and the strain energy under self-weight. Each of four corners

have a pair of pin supports to avoid the stress concentration.

The initial values of the control points are defined so as to closely represent the bi-directional

quadratic functionz = h(x2 − a2)(y2 − b2), where the origin of the coordinate system is the

center of the square including the supports. The span is 30 m and rize is 6 m; i.e.,a = b = 15,

h = 6/a2b2. Based on the symmetry condition, the optimal shapes are found for Bézier patch

representing the 1/4 part of the shell as shown in Fig.1(b).

30m

30m

Rize [m] 6.00
Young’s modulus [GPa] 21.00

Poison ratio 0.17
Unit weight [kN/m3] 24.00

Tickness(uniformity) [m] 0.10
Area [m2] 989.77

6m

(a) Plan, view, and various amounts of shape (b) 1/4 area b́ezier patch
Fig.1. Analytical model



The uniform thickness of the shell is 0.1 m, weight density is 24k N/m3. Young’s modulus

and Poisson’s ratio are 21 GPa and 0.17, respectively. Displacements and stresses under self-

weight are calculated by linear static finite element analysis. The constant strain triangular

element4) is adopted for the in-plane deformation and nonconforming triangle element proposed

by Zienkiewicset al.5) is adopted for the out-of-plane deformation.

The design variables are thez-coordinatesqz of the control points of the B́ezier surface for

the 1/4 part; hence, the number of variables 16. Because Bézier patch shuts in 1/4 areas, the

continuousness of the gradient and the curvature in the boundary part is not necessarily kept.

The number of nodes for the analysis is 99 because it does in 1/4 areas about the structure

analysis in consideration of symmetry.

The optimum shape is found under constraints on the coordinates of the supports and the al-

gebraic invariants. Moreover, to prevent unrealistic shape with extremely large rise, and to

improve the convergence property of optimization algorithm, an upper bound is given for the

area of shell’s middle surface (henceforth area). Since the shell has a uniform thickness, the

area constraint is equivalent to the volume or weight constraint that is usually regarded as rep-

resenting the material cost.

In each of the optimization problem formulated below, total number of degrees of freedom,

nodal displacement vector, linear stiffness matrix, area, and vector consisting ofz-coordinates

of the supports are denoted byn, d ∈ Rn, K ∈ Rn×n, S, and r∗z ∈ R2, respectively. The value

of the initial shape is shown by 0 subscript. The sequential quadratic programming method in

SNOPT6) is used for optimization.

4.2 Optimal shape without constraints on algebraic invariants

We first find optimal shape without constraints on algebraic invariants. The strain energy is

minimized as follows under constraints on the locations of the supports, and the upper-bound

constraint on the area:

minimize f (qz) =
1
2

d>Kd

subject to

{
S − S0 ≤ 0
r∗z − r∗z,0 = 0

(17)

f (qz) = 21.125[kNm]

dmax = 44.199[mm]
σc

max = 7.1183[N/mm2]
σt

max = 3.0838[N/mm2]
σb

max = 7.9380[N/mm2] f (qz) = 1.3556[kNm]

dmax = 1.8557[mm]
σc

max = 2.5682[N/mm2]
σt

max = 0.0583[N/mm2]
σb

max = 0.7813[N/mm2]
(a) (b) (a) (b)

Fig.2. Initial shape Fig.3. Optimal shape

The initial and optimal shapes are shown in Figs.2(a) and 3(a), respectively. The dashed and



solid lines, respectively, in Figs.2(b) and 3(b) are the undeformed and deformed shapes, where

the displacements are magnified by the factor 100. The optimal objective valuef (qz), maximum

values of displacementdmax, compressive stressσc
max, tensile stressσt

max, and bending stress

σb
max are also shown in the figures. It can be confirmed from the optimization result that bending

and tensile stresses are reduced and the shape is optimized so that the shell resists the self-weight

mainly with compression.

4.3 Optimal shape without constraints onβ invariants

We next consider the following optimization problem by introducing the constraints onβ in-

variants to obtain a locally convex surface:

minimize f (qz) =
1
2

d>Kd

subject to



S − S0 ≤ 0
r∗z − r∗z,0 = 0
βc

2 > 0
βc

1 ≤ β c : Invariants constraints point
(sc, tc) = (0.5,0.5)

βc
2 : β2value at point c
βc

1 : β1value at point c (18)

whereβ < 0 to ensure convexity around pointc indicated by the dot in the figure.

f (qz) = 1.8313[kNm]

dmax = 3.4742[mm]
σc

max = 3.0681[N/mm2]
σt

max = 0.2700[N/mm2]
σb

max = 0.5567[N/mm2]
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Fig.4. Optimal shape (β = −0.1)

f (qz) = 2.9603[kNm]

dmax = 5.4138[mm]
σc

max = 3.1871[N/mm2]
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Fig.5. Optimal shape (β = −0.15)

Figs.4 and 5 show the optimization results forβ = −0.1 and−0.15, respectively. Contour

lines of thez-coordinates are plotted in Figs.4(c) and 5(c). As is seen, the masimum values of

displacement, compressive stress, and tensile stress increase as a result of assigning requirement

of local convexity. The displacement and stresses also increase by increasing the absolute value

of βc
1.



4.4 Optimal shape without constraints onγ invariants

We next solve the following problem with constraints onγ invariants to obtain locally cylindri-

cal and convex surface:

minimize f (qz) =
1
2

d>Kd

subject to



S − S0 ≤ 0
r∗z − r∗z,0 = 0
γci

2 = 0
γci

3
2 − γci

1
2
> 0

γci
3 ≤ γci

(i=1,2)

ci : Invariants constraints point
(sc1, tc1) = (0.25,0.25)
(sc2, tc2) = (0.75,0.75)

γci
2 : γ2value at pointci
γci

1 : γ1value at pointci (19)

where the constraints on theγ invariants are given at pointsc1 andc2 indicated by dots in the

figure.

f (qz) = 1.8313[kNm]

dmax = 3.4742[mm]
σc

max = 3.0681[N/mm2]
σt

max = 0.2700[N/mm2]
σb

max = 0.5567[N/mm2]
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Fig.6. Optimal shape (γc1
= γc2

= −0.015)

f (qz) = 2.9603[kNm]

dmax = 5.4138[mm]
σc

max = 3.1871[N/mm2]
σt

max = 0.3651[N/mm2]
σb

max = 1.1442[N/mm2]
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Fig.7. Optimal shape (γc1
= γc2

= −0.025)

Figs.6 and 7 show the optimization results forγc1
= γc2

= −0.015 andγc1
= γc2

= −0.025,

respectively. It can be confirmed that a locally cylindrical and convex surface has been success-

fully obtained by introducing the constraints on theγ invariants.

4.5 Optimal shape with developability constraints

Finally, we generate a developable surface by shape optimization. The following problem is to

be solved so thatβ2 vanishes at 25 points indicated by the dots in the figure:

minimize f (q) =
1
2

d>Kd

subject to


S − S0 ≤ 0
βci

2 = 0
(i=1,··· ,25)

ci : Invariants constraints point
sci, tci ∈ [0.1,0.3,0.5,0.7,0.9]

βci
2 : β2value at pointci

(20)

The optimal shape is shown in Fig.8. It can be seen from Fig.8(c) that maximum value ofβci
2

has been successfully minimized, although there is no guarantee thatβ2 becomes 0 at the points



f (qz) = 2.9603[kNm]

dmax = 5.4138[mm]
σc

max = 3.1871[N/mm2]
σt

max = 0.3651[N/mm2]
σb

max = 1.1442[N/mm2]
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Fig.8. Optimal shape

where the constraints are not given. The contour lines became almost straight and parallel It

can be confirmed from Fig.8(a) that each of the 1/4 part seem to be deveopable. Furthermore,

both of the strain energy and the maximum vertical displacement have smaller values than the

initial shape.

5. CONCLUSIONS

The local properties of the shell surface can be explicitly controled by solving an optimization

problem with constraints on the algebraic invariants of the surface. Moreover, a developable

surface can be obtained by assigning the constraint such that the Gaussian curvature vamishes

everywhere on the surface.

It may be concluded that the algebraic invariants are effective indices representing the local

properties of the surface, and the optimal shell shape considering the aesthetic aspects, con-

structability and mechanical rationality can be generated using the proposed approach at the

early design stage.
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