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ABSTRACT
A new approach is proposed for shape optimization of shell structures, where requirements on
the aesthetic aspect and the constructability as well as the structural rationality are simultane-
ously considered in the problem formulation. The surface shape is modeled using a tensor-
product Bezier surface to reduce the number of variables, while the ability to generate moder-
ately complex shape is maintained. The strain energy is used to represent the mechanical per-
formance, and the aesthetic properties and smoothness of the surface are quantified by algebraic
invariants of the surface. The condition of the developable surface is ensured by incorporating
the constraints on the principal curvature. THee&tiveness of the present approach is confirmed
through several numerical examples, and the characteristics of the results are discussed.

1. INTRODUCTION

Advancement of computer technologies as well as the developments of structural materials and
construction methods enabled us to design so cékedform shellwhich has complex shape

and topology that cannot be categorized to traditional shapes. However, the mechanical behav-
ior of such shell is very complicated, and it is veryfdiult for a designer to decide feasible
shape of a real-world structure based orntes experience and intuition as a compromise of
aesthetical property and mechanical rationality. Furthermore, it is very important in practi-
cal design that the smoothness of the shape should be maintained while moderately complex
geomerty is searched. In this respect, qualitative measures for defining roundness may be ef-
fectively utilized-?. However, there are other measures of smoothness to be considered by the
designers.

In this study, a new approach is proposed for shape optimization of shells modeled ésieg B



surface. The strain energy is used to represent the mechanical performance, and the aesthetic
aspects and smoothness of the surface are quantified by algebraic invariants of the surface repre-
senting curvature, convexity, gradient, etc. The condition of the developable surface is ensured
by incorporating the constraints on the principal curvature.

2. SHAPE REPRESENTATION BY BEZIER SURFACE

The number of variables for optimization can be drastically reduced without sacrificing smooth-
ness and complexity of the surface using trezigr surface. Moreover, the basis functions of
Bézier surface can be expressed explicity with respect to the coordinates of the control points,
which enables us to carry out sensitivity analysis of the algebraic invariants analytically. The
point S ;(s,t) = [X(s 1), ¥(S 1), Z(s, )] on a tensor product &ier surface is defined with pa-
rameterss,t € [0, 1] as

| J
Sa(st) =) > 6;Bii(9By() (1)
i=0 j=0

whered; = [dyxij, Oyij» Gzij] " is the control point, an@, ;(s) and B,(t) are the Bernstein basis
functions.| andJ are the orders of the functions. The vectoxafoordinates of control points
is defined as

Oy = [Ox00: *** » Oxods *** » Oxios*+* » Ota] " (2)
d, andq, are defined similarly.
In order to evaluate the static responses of the shells using finite element method, we divide the
surface of (1) intd’ x J’ grid with uniformly spaced parameterands, respectively, and the
vectorr, of the x-coordinates of the nodes is defined as

Iy = [X(S0, to), - -+, X(So. i), - -+, X(Sir, 1), -+, X(S, t3)] " 3

ry andr, are defined similarly. The coordinate vector of a node on the surface can be written as

follows:
Sii(set) = Z
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3.8 INVARIANTS AND ¥ INVARIANTS
We use the six algebraic invariamgs, 81, 82, y1, v2, andy; proposed by Iriet al. ® for rep-
resenting the geographical propeties. Here, we regad) of the Bézier surface (1) as the
altitude of the geographical representation.
3.1 Definitions of tensors and vectors
In the following, the covariant and the contravariant components are indicated by the subscript
and superscript, respectively. The components of the covariant gradient zeittercovariant
hessiarh, and the covariant metric tensgrare defiend
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SIS N ®




which are obtained from
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Letzandg denote the contravariant gradient vector-abordinate and the contravariant metric
tensor, respectively. Then the following relations holds:
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,2=0z z=0Z (9)
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In addition, we define the following contravariant veckor
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The product of a covariant vector and a contravariant vector, and the bilinear form with respect
to a second-order covarigobntravariant tensor and a conrtavariaobariant vector are invari-
ant with respect to the definition of the parameter of the surface. Fhendy invariants are
defined as follows:
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3.2 SURFACE PROPERIES BASED ON ALGEBRAIC INVARIANTS

The six algebraic invariangy, 81, B2, v1, v2, andys, defined using the vectors and tensors given

in Sec.3.1, are used for quantitative evaluation of the surface properties. The local properties in
the neighborhood of a point P on the surface are characterized by the invariants as follows:

B2 > 0 The contours in the neighbourhood of P are coaxial (part of) similar ellipses. Especially,
whenp? = 48,, the contours are (part of) concentric circles and the surface is locally
isotropically curved. The shape is locally concavg,if- 0, and locally convex iB; < 0.



B2 < 0 The contours in the neighbourhood of P are (part of) coaxial hyperbolas. Locally, the
surface is convex in some directions and concave in others. There are special directions
in which the contour lines are straight (i.e., neither concave nor convex).

B2 = 0 One of the principal curvatures is 0. Furthermore, the other principal curvature is posi-
tive if 8, > 0; and negative iB; < 0; and 0 if3; = 0 that means a locally flat surface.

Bo =0 P is acritical point (locally maximuyminimum value ofz-coordinate).

v2 = 0 Direction of gradient vector coincides with one of the principal direction, and the surface
—near P is locally cylindrical and concave in one principal directiopy4f < |ys| and
lys = 0]; wheras it is locally cylindrical and convex in one principal directiofyif > |y3|
andly; = 0|.

In addition,3; andB, correspond to the twice the average curvature and the Gaussian curvature,
respectively. Furthermore; /B3, is the curvature in the steepect desent directionané, is

the curvature in its perpendicular direction.

In view of constructability, it is desirable that the surface can be developed to a plane without
expansion or contraction. Such surface is called developable surface, which is characterized
by vanishing Gaussian curvature. Therefore, to generate a developable surface, the constraint
B> = 0 should be satisfied at any point on the surface.

4. NUMERICAL EXAMPLES

4.1 Sescription of shell model and optimization problem

The shape of the shell structure that has the square plane as shown in Fig.1(a) is optimized con-
sidering the algebraic invariants and the strain energy under self-weight. Each of four corners
have a pair of pin supports to avoid the stress concentration.

The initial values of the control points are defined so as to closely represent the bi-directional
quadratic functiorz = h(x? — a?)(y? — b?), where the origin of the coordinate system is the
center of the square including the supports. The span is 30 m and rize is 6 @m=.b.= 15,

h = 6/a?b?. Based on the symmetry condition, the optimal shapes are foundéfieBpatch
representing the/a part of the shell as shown in Fig.1(b).
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30m
Rize [m] 6.00 )
Young’s modulus | [GPa] | 21.00
Poison ratio 0.17 £ ﬁ
Unit weight [KN/m3]| 24.00
- —T\ | Tickness(uniformity); [m] 0.10 /
! 30m Area [m2] | 989.77

(a) Plan, view, and various amounts of shape (8)akea Bzier patch
Fig.1. Analytical model



The uniform thickness of the shell is 0.1 m, weight density is 24kaN Young’s modulus

and Poisson’s ratio are 21 GPa and 0.17, respectively. Displacements and stresses under self-

weight are calculated by linear static finite element analysis. The constant strain triangular

element is adopted for the in-plane deformation and nonconforming triangle element proposed

by Zienkiewicset al.® is adopted for the out-of-plane deformation.

The design variables are tlzecoordinatesq, of the control points of the &ier surface for

the Y4 part; hence, the number of variables 16. BecausaeB patch shuts in/4 areas, the

continuousness of the gradient and the curvature in the boundary part is not necessarily kept.

The number of nodes for the analysis is 99 because it doegliarkas about the structure

analysis in consideration of symmetry.

The optimum shape is found under constraints on the coordinates of the supports and the al-

gebraic invariants. Moreover, to prevent unrealistic shape with extremely large rise, and to

improve the convergence property of optimization algorithm, an upper bound is given for the

area of shell’s middle surface (henceforth area). Since the shell has a uniform thickness, the

area constraint is equivalent to the volume or weight constraint that is usually regarded as rep-

resenting the material cost.

In each of the optimization problem formulated below, total number of degrees of freedom,

nodal displacement vector, linearftiess matrix, area, and vector consisting-cbordinates

of the supports are denoted hyd € R, K € R™", S, andr; € R?, respectively. The value

of the initial shape is shown by 0 subscript. The sequential quadratic programming method in

SNOPT is used for optimization.

4.2 Optimal shape without constraints on algebraic invariants

We first find optimal shape without constraints on algebraic invariants. The strain energy is

minimized as follows under constraints on the locations of the supports, and the upper-bound

constraint on the area: 1
minimize f(q,) = EdTKd
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Fig.2. Initial shape

The initial and optimal shapes are shown in Figs.2(a) and 3(a), respectively. The dashed and
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Fig.3. Optimal shape



solid lines, respectively, in Figs.2(b) and 3(b) are the undeformed and deformed shapes, where
the displacements are magnified by the factor 100. The optimal objectiveM@yemaximum

values of displacement,,x, compressive stress;,.,, tensile stress™, .., and bending stress

ob .are also shown in the figures. It can be confirmed from the optimization result that bending
and tensile stresses are reduced and the shape is optimized so that the shell resists the self-weight
mainly with compression.

4.3 Optimal shape without constraints ong invariants

We next consider the following optimization problem by introducing the constraing® ian

variants to obtain a locally convex surface:

minimize f(q,) = %dTKd
S-59<0

, r,—r,,=0
subject to z z0
J 85> 0

5 - Bzvalue at point ¢
¢ : pyvalue at point ¢ (18)

¢ : Invariants constraints point
1<B (<, = (0.5,0.5) P

whereg < 0 to ensure convexity around pomindicated by the dot in the figure.
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Fig.5. Optimal shape3(= —0.15)

Figs.4 and 5 show the optimization results fr= —0.1 and—0.15, respectively. Contour

lines of thez-coordinates are plotted in Figs.4(c) and 5(c). As is seen, the masimum values of
displacement, compressive stress, and tensile stress increase as a result of assigning requirement
of local convexity. The displacement and stresses also increase by increasing the absolute value

of 5.



4.4 Optimal shape without constraints ony invariants
We next solve the following problem with constraintsppmvariants to obtain locally cylindri-
cal and convex surface:

minimize f(q,) = %dTKd

S*— SQ <0 G . .
r,—r,,=0 Y5t yevalue at po!nt:! -
_ ¥5 =0 ¥§' : yavalue at pointi (19)
subjectto? ‘&2 2 . . . .
¥s —v7 >0 ci:lInvariants constraints point
ci < 30 SCl,tCl = (0.25,0.25
1357 $2,t%?) = (0.75,0.75

where the constraints on theinvariants are given at pointd andc2 indicated by dots in the
figure.
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Fig.6. Optimal shapef’ = 3% = —0.015)
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Fig.7. Optimal shapef* = 3% = —0.025)

Figs.6 and 7 show the optimization results §6t = 3% = —-0.015 andy™* = 3% = —0.025,
respectively. It can be confirmed that a locally cylindrical and convex surface has been success-
fully obtained by introducing the constraints on thevariants.

4.5 Optimal shape with developability constraints

Finally, we generate a developable surface by shape optimization. The following problem is to
be solved so tha, vanishes at 25 points indicated by the dots in the figure:

. 1 _
minimize f(q) = EdTKd S : Bovalue at pointi

_ S-S;<0 _ _ _ (20)
subjectto { gS =0 ci ; Invariants constraints point
(121, 25) <. t9°€[0.1,0.3,0.5,0.7, 0.9]

The optimal shape is shown in Fig.8. It can be seen from Fig.8(c) that maximum vaiJe of
has been successfully minimized, although there is no guarantgg thextomes 0 at the points
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Fig.8. Optimal shape

where the constraints are not given. The contour lines became almost straight and parallel It
can be confirmed from Fig.8(a) that each of tl# gart seem to be deveopable. Furthermore,
both of the strain energy and the maximum vertical displacement have smaller values than the
initial shape.

5. CONCLUSIONS

The local properties of the shell surface can be explicitly controled by solving an optimization
problem with constraints on the algebraic invariants of the surface. Moreover, a developable
surface can be obtained by assigning the constraint such that the Gaussian curvature vamishes
everywhere on the surface.

It may be concluded that the algebraic invariants dfecéive indices representing the local
properties of the surface, and the optimal shell shape considering the aesthetic aspects, con-
structability and mechanical rationality can be generated using the proposed approach at the
early design stage.
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