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Abstract  
A single-point local search method is presented as a simplification of the multiobjective tabu search. Some improvements 
are made to reach the Pareto front within small number of function evaluations. The performance of the proposed method 
is first verified by a small mathematical problem. It is shown that accurate Pareto optimal solutions with good diversity 
are obtained by using the proposed method. Pareto optimal solutions are next found for a 5-story 4-span steel building 
frame. The objective functions are the total structural volume and the compliance under the specified set of loads. It is 
shown that about 30 Pareto solutions with good accuracy can be found by carrying out structural analysis 200 times. The 
proposed method has very few problem-dependent parameters. Therefore, the method can be applied to multiobjective 
optimization of large structures, for which the population-based method is difficult to be applied. 
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1. Introduction 
Optimal designs of moderately large structures can be obtained if the objective function and the constraints are continuous 
functions of the design variables. In the fields of civil engineering and architectural engineering, however, the 
cross-sectional properties of the frames are usually selected from the lists or catalogs of the standard sections. Therefore, 
the optimization problems are formulated as a combinatorial optimization problem with continuous state variables. 

It is very easy to solve a combinatorial optimization problem if the number of variables is small. However, the 
computational cost increases as an exponential function of the problem size, and it is not possible to solve a practical 
problem within a practically admissible computational time. However, in the practical design process, it may be enough to 
obtain an approximate optimal design. Heuristic approaches have been developed to obtain approximate optimal solutions 
within reasonable computation time, although there is no theoretical proof of convergence [1]. The most popular 
approach is the genetic algorithm, which can be categorized as a multipoint search or population-based method that has 
many solutions at each iterative step called generation. Since computational cost for evaluating the objective and/or 
constraint functions at each step may be very large for structural optimization problems, a multipoint strategy may not be 
appropriate especially for of large structures. Therefore, single-point search heuristics such as simulated annealing [2] and 
tabu search [3] are preferred. 

Another aspect of optimization of the frame structures is that it usually has multiple performance measures as objective 
functions, and the design problem should be formulated as a multiobjective programming problem [4], for which several 
single-point search methods have been developed [5-8]. In this study, local search methods are presented for 
combinatorial multiobjective structural optimization. It is shown in the numerical examples that approximate Pareto 
optimal solutions with good accuracy and diversity can be easily found by using various criteria for selecting the seed 
solution. 
 
2. Multiobjective Combinatorial Optimization Problem of a Frame Structure 
Suppose a list of available standard sections is given for an optimization problem of frame structures. Let iJ  denote an 
integer variable for the i th member. iJ j=  ( 1,2, , )i m= …  indicates that j th section is assigned to the i th member, 
where m  is the number of members. The constraints, if exist, are assumed to be incorporated to the objective function 
using the standard approach of penalty method. 

Let ( )iF J  denote the i th objective function, which is a function of 1( , , )mJ J=J … . Let p  denote the number of 
objective functions. The multiobjective optimization problem to minimize the objective functions 1( ), , ( )pF FJ J…  is 
formulated as 

Minimize 1 2( ), ( ), , ( )pF F FJ J J…          (1) 
subject to {1,2, , }i iJ r∈ … ,  ( 1,2, , )i m= …        (2) 

where ir  is the number of standard cross-sections for the i th member. 
 
 



 
 
3. Local Search for Multiobjective Combinatorial Optimization Problem 
The basic approach of local search is presented as follows as a simplification of multiobjective tabu search by Baykasoglu 
et al. [6]: 
Step 1: Randomly generate initial solution J(0), which is selected as the seed solution J*. The Pareto list P and candidate 

list C are initialized as P = C = {J(0)}. 

Step 2: Select q neighborhood solutions N{ |   1,  ,  }j j q= =J "N  from J*. The candidate set S is defined with the 

solutions in N that are not dominated by any solution in N, P and C.  
Step 3: Randomly select the solution J* from S. If S is empty, assign the oldest solution in C to J*. 
Step 4: Remove the solutions in P and C, which are dominated by a solution in S. 
Step 5: Add J* to P, and other candidate solutions to C.  
Step 6: Stop if C is empty and there exists no new candidate solution, or if the number of steps reaches the prescribed 

limit; otherwise, go to step 2. 
 
4. Selection of Seed Solution 
The seed solution should be selected in Step 3 of each iteration so that the Pareto set should have enough accuracy and 
diversity. Therefore, following five techniques are proposed to generate such Pareto optimal set by the single-point local 
search. Note that the objective function Fi is normalized by the scaling factor Di as 

* /i i iF F D= ,   (i = 1, ..., p)         (3) 
Method 1: Randomly select a seed solution from the set S, which is the basic method presented in the previous section. 
Method 2: Define the congestion Ni in the neighborhood of Ji in S as  
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where d(Ji, Jj) is the distance between the solutions Ji and Jj, and the sharing function s(d) is defined as 
s(d) = max (0, 1−d/σ)         (5) 

with the prescribed sharing radius, or niche size, σ. Then select the solution in S with smallest Ni as the seed 
solution. 

Method 3: Let F* and F*(i) denote the vectors of the objective functions of the current seed solution and the ith solution in 

S, respectively. Then select the solution with smallest value of *( )

1
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objective functions. 
Method 4: Select the solution with smallest value of increase *( )i

j jF F−  for the specified objective function Fj. 
 
5. Performance Measures of Pareto Optimal Solution 
Let A denote the exact set of Pareto solutions obtained, e.g., by enumeration. The size of the approximate Pareto optimal 
set P obtained by one of the methods presented in the previous section is denoted by n. The performance of the Pareto 
optimal set is evaluated by the following three measures used in Coello et al. [9,10]: 
Error ratio: If the ith approximate Pareto solution in P is not included in A, then ei = 0, otherwise, ei = 1. Define the error 

ratio ER as 
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The approximate Pareto set is subset of A if ER = 0. 
Generational distance: Let di be the minimum distance from the ith approximate solution to a solution in A. The 

generational distance GD is defined as 
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The approximate Pareto set is a subset of A if GD = 0. 
 



 
 

Spacing: The minimum Manhattan distance gi from the ith approximate solution to a solution in A as 
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where *( )i
kF  and tilde *( )j

kF  are the kth objective functions of the ith solution in A and the jth solution in P, 
respectively. Let g denote the mean value of gi. The spacing S is defined as 
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If the approximate solutions are uniformly spaced, then S = 0. 
 
In addition to these performance measures, the span of the Pareto set is defined as 
Span: 

*( ) *( )

, 1
W max

p
i j

k ki j k
F F

=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑        (10) 

The solution with wide diversity is found if W is sufficiently large. 
 
6. Numerical Examples 
6.1. Mathematical Example 

The performance of local search is first investigated by a small mathematical problem. Consider the following problem 
used in Coello et al. [9,10]: 

Minimize   1 1 2 3 4( ) 200(2 2 )F x x x x= + + +x ,  2
2 3 4

1 2 2 2 2( )
100

F
x x x

⎛ ⎞+
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
x    (11) 

subject to  11 3x≤ ≤ ,  22 3x≤ ≤ ,  32 3x≤ ≤ ,  41 3x≤ ≤        (12) 
 
The real variable xi is discretized to an integer variable Ji as 

L ( )i i i i ix J x x J= + Δ × ,  U L( ) /( 1)i i i ix x x rΔ = − −       (13) 
where U

ix  and L
ix  are the upper and lower bounds of xi, respectively, and ri is equal to 214 = 16384 for x1 and x4, and 213 = 

8192 for x2 and x3.  
In the following figures, the solid lines are the exact Pareto front obtained by enumeration. Note that F1 is an increasing 

function of x1, and F2 does not depend on x1. Furthermore, F1 and F2 are increasing functions of x3. Therefore, x1 and x3 
can be fixed at their lower bounds in the process of enumeration. Hence, the total number of combination is 213×213 = 
67,108,864. 

Neighborhood solutions are generated using the random numbers with normal distribution. The mean values are 0, and 
the standard deviation is 800 for J1 and J4, and 400 for J2 and J3. If the value of Ji generated by the random number turns 
out to be less than 1 or greater than ri, then Ji is replaced by 1 or ri, respectively. Note that all variables are simultaneously 
modified in generating the neighborhood solutions, and the scaling factors are D1 = 600, D2 = 0.03. 

The 100 neighborhood solutions generated from a feasible solution indicated by ■ are plotted in Fig. 1. As is seen, the 
neighborhood solutions are symmetrically spaced around the feasible solution in the objective function space. Therefore, 
it is expected that the Method 1 of randomly selecting the seed solution can be used to rapidly reach the Pareto front.  

 

    
Figure 1. Neighborhood solutions for   Figure 2. Pareto optimal solutions     Figure 3. Pareto optimal solutions obtained 
              the mathematical example.                     obtained by 8000 analyses;                by 400 analyses; Method 1,  

Method 1, maximum W.                    maximum W. 



 
 

The optimization results with function evaluations of 8000, 2000 and 400 times, indicated by Cases 8000, 2000 and 400, 
are shown in Table 1. The size q of the neighborhood is 10 for Cases 8000 and 2000, and 4 for Case 400; i.e. the numbers 
of update of seed solution are 800, 200 and 100, respectively. Method 1 is used for selection of seed solution. The Pareto 
optimal solutions are generated from 30 different initial random numbers for each cases, and their minimum, maximum, 
mean and standard deviation are computed. 

The minimum, maximum, mean and standard deviation of ER in Ref. [10] by 8000 analyses of particle swarm 
optimization are 0.07, 0.35, 0.23 and 0.063, respectively. Therefore, the results of local search are not better than those by 
the particle swarm optimization. However, the values of GD and SR by 2000 analyses are less than 1/1000 and 1/100, 
respectively, which are very small. Hence, very good performance is observed for local search with small number of 
function evaluations. 

The ‘+’ marks in Fig. 2 are the approximate Pareto solutions of Case 8000 by Method 1 with maximum W. Note that 
the Pareto solutions with good accuracy can be obtained by Case 8000 irrespective of the initial random seed. The results 
of Case 400 with Method 1 with maximum W are shown in Fig. 3. As is seen from Table 1, the four measures of Case 400 
are worse than those of Case 2000. However, it is observed from Fig. 3 that many diverse Pareto approximate solutions 
with good accuracy have been found within 400 function evaluations. 
 

Table 1. Performances of local dearch with different function evaluation times. 
Case 8000 

 ER GD (×10−3) SP (×10−2) W 

Minimum 
Maximum 

Mean 
Std. Dev. 

0.139 
0.574 
0.399 
0.102 

0.011 
0.360 
0.070 
0.072 

0.111 
0.506 
0.275 
0.104 

1.792 
2.166 
1.971 
0.100 

Case 2000 
 ER GD (×10−3) SP (×10−2) W 

Minimum 
Maximum 

Mean 
Std. Dev. 

0.162 
0.709 
0.440 
0.153 

0.075 
7.035 
0.510 
1.241 

0.321 
1.838 
0.666 
0.328 

1.270 
2.062 
1.739 
0.265 

Case 400 
 ER GD (×10−3) SP (×10−2) W 

Minimum 
Maximum 

Mean 
Std. Dev. 

0.296 
1.000 
0.737 
0.194 

0.528 
43.61 
5.255 
9.453 

0.536 
3.644 
1.764 
0.665 

0.797 
1.721 
1.336 
0.214 

 
6.2. Plane Frame Model 
Consider a 5-story 4-span plane frame as shown in Fig. 4 subjected to static loads, where the horizontal loads (kN) are (P1, 
P2, P3, P4, P5) = (7.5, 8.4, 10.1, 13.1, 31.5), and the vertical loads are W1 = 245 kN, W2 = 343 kN. The elastic modulus is 
205.8 kN/mm2. The members are divided to 15 groups considering symmetry conditions as indicated in Fig. 4. The 
variables Ji (i=1, …, 15) are selected from the predefined lists of available sections. See Ref. [8] for the details of the lists. 
Note that the numbers of candidate sections for beams and columns are 9 and 8, respectively. 

The objective functions F1 and F2 to be minimized are the total structural volume and compliance, respectively. The 
scaling factors are D1 = 4.0, D2 = 30.0. A uniform random number [0,1)τ ∈  are generated, and the section is increased or 
decreased by 1 for 0.5τ ≥  or 0.5τ < , respectively. If the value of Ji generated by the random number turns out to be less 
than 1 or greater than ri, then Ji is replaced by 1 or ri, respectively. All variables are modified when generating a 
neighborhood solution. The Pareto set is generated from 30 different initial random seeds for each case. The solid line in 
the following figures shows the Pareto front obtained by 90 times carrying out local search with 5000 analyses.  

The results are presented by using the abbreviation based on number of analyses, method number for selection of seed 
solution, and the performance measure used for selection of the results from the 30 runs; e.g., Case200-3-W indicates that 
the number of analyses is 200, and the Pareto set with maximum W is selected from the 30 results by Method 3. For 
Method 4, the objective function to be minimized is also indicated. 
 



 
 

         
Figure 4. A 5-story 4-span frame.   Figure 5. Neighborhood solutions for the 5-story frame. 

 

     
Figure 6. Case-5000-1-W.                         Figure 7.  Case-400-1-W.                      Figure 8.  Case-400-1-GD. 

 
Fig. 5 shows the 100 neighborhood solutions generated from a feasible solution indicated by ■. As is seen, there is no 

solution that improves both of the objective functions; therefore, it is difficult to reach the Pareto front for this problem. 
The result of Case-5000-1-W is shown in Fig. 6, where q = 10. It is observed from Fig. 6 that the solutions with good 
diversity have been found. 

We next investigate the possibility of generating Pareto solutions with small number of analysis in view of application 
to structural optimization problems. The result of Case-400-1-W is shown in Fig. 12, where q = 4. A good accuracy is 
observed except in the region of small F1. Fig. 13 shows the result of Case-400-1-GD. Although the accuracy around the 
center region has been improved, the solutions with small F1 could not been obtained. 
 

     
Figure 9. Case-200-1-GD.                         Figure 10. Case-200-3-W.                         Figure 11. Case-200-3-GD. 

 

     
Figure 12. Case-200-4-F1-W.                     Figure 13. Case-200-4-F2-W.                     Figure. 14 Case-200-2-W. 



 
 

The result of Case-200-1-GD is shown in Fig. 9, where q = 4. In this case, no exact Pareto solution was found. If q is 
decreased to 2 to increase the number of update of seed solution from 50 to 100, the process terminated because no 
candidate solution could be found. The results of Case-200-3-W and Case-200-3-GD are shown in Figs. 10 and 11, 
respectively. As is seen, it is difficult to improve the accuracy, as observed from Fig. 5, even when the seed solution to 
most rapidly reach the Pareto front is selected.  

Figs. 12 and 13 show the results of Case-200-4-F1-W and Case-200-4-F2-W, which have many solutions with small F1 
and F2, respectively. Fig. 14 shows the result of Case-200-2-W, where σ = 0.1. As is seen, the use of shearing function 
leads to diversity of the solutions, while sacrificing the accuracy. The average number of Pareto solutions is 26.8, which 
means that the solutions with practically acceptable numbers are generated with 200 analyses. Fig. 15 shows the 
cross-sectional arras of the solutions corresponding to A, B, and C in Figs. 12-14. As is seen, the cross-sectional areas of 
the columns are almost uniform for small structural volume. The area of internal column first increases as the structural 
volume is increased. 
 

       
(A)                                                (B)                                              (C) 

Figure 15. Cross-sectional areas of Pareto solutions. 
 
7. Conclusions 
The following conclusions have been drawn from this study: 
1. Many Pareto optimal solutions with sufficient accuracy and diversity are obtained by local search with small number 

of function evaluations. Therefore, the local search is very effective for structural optimization, for which substantial 
computational cost is needed for function evaluation. 

2. Accuracy, diversity and distribution of Pareto solutions in the objective function space can be effectively controlled 
by using various measures in selection of seed solution from the neighborhood solutions. 

3. The effectiveness of the local search can be easily estimated from the distribution of the neighborhood solutions in 
the objective function space. 

4. Since the proposed method has very few problem-dependent parameters, the method can be easily applied to various 
structural optimization problems. 
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