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Abstract  

This paper presents three optimization approaches for force and shape design of tensegrity structures. The first approach 

is to find the self-equilibrated configuration of a tensegrity structure, by minimizing the difference of strain energy 

between cables and struts; the second method is to find self-equilibrated configurations for the structures modeled as 

directed graphs, where the deviation of member forces from target values is to be minimized; and the third method is to 

find the optimal distribution of member forces so as to let the structure have maximum stiffness as well as uniform 

member forces. 
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1. Introduction 

Shape and member forces of a tensegrity structure are highly interdependent on each other, in the aspects of  

self-equilibrium as well as stability. Shape design and force design, for the determination of self-equilibrated and stable 

configuration for a tensegrity structure, are the two major subjects in the design of tensegrity structures. In this paper, we 

introduce some of our attempts to tackle these problems making use of the well-developed optimization techniques. 

Tensegrity structure is a kind of prestressed pin-jointed structure. It consists of members either in compression or in 

tension. The term ‘tensegrity’ is a contraction of ‘tensional’ and ‘integrity’, referring to the integrity of stable structures 

based on a synergy between the balanced compressive and tensile members[1]. The members in compression and in 

tension are respectively called struts and cables, and they are respectively shown in thick and thin lines in the figures in 

the paper. A tensegrity structure can be free-standing without any fixed nodes, e.g. the prismatic structure in Figure.1(a), 

or can be attached to supports, e.g. the tensegrity dome in Figure.1(b). Principles of tensegrity structures have been 

successfully applied in many different disciplines, such as architecture, mechanical engineering, bio-medical engineering, 

and mathematics. 

Among the many distinct properties of tensegrity structures compared to conventional structural forms, 

self-equilibrium and stabilizing effect by the prestress are their spirits. Configuration and distribution of member forces of 

a tensegrity structures are the major factors that have significant influence on these two properties. Hence, shape design, 

which is to determine the self-equilibrated configuration, and force design, which is to determine the distribution of 

member forces, are of great importance in the design of tensegrity structures. These two design problems can be 

separately dealt with, and can be combined together, subjected to given conditions. 

Following this introductory section, we will discuss three different optimization problems for the shape design and 

force design problems of tensegrity structures:  
 
(1) Section 2 is to have direct control over the magnitudes of forces of some members, by solving the problem of 

minimizing the difference between strain energy of cables and struts. 

 

        
                                         (a) Prismatic structure                                   (b) Tensegrity dome 

Figure 1. Examples of tensegrity structure. (a) is free-standing, and (b) is attached to supports. 
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(2) The approach in Section 3 is for the control of member directions, where tensegrity structures are modeled as 

directed graphs, and their self-equilibrated configurations are determined by minimizing the deviation of member 

forces from target values. 

 (3) Section 4 deals with the structures with given configurations and more than one mode of member forces; our 

objective is to find the Pareto optimal solutions for force distribution leading to strongest structures as well as 

minimum deviation of member forces in the same group of members.  
 
These studies are briefly discussed and concluded in Section 5. 

For the sake of simplification, the following assumptions are adopted for all cases considered in the study:  
 

(a) The members are straight and are connected by pin-joints. 

(b) Neither self-weight nor external load is considered. 

(c) Member failure, such as yielding or buckling, is not considered.  

(d) Topology of the structure is assumed to be given. 
 
Moreover, n, m and d are global variables in the paper, denoting the numbers of nodes and members, and dimensions of 

the structure, respectively. 

 

2. Self-equilibrated Configuration by Strain Energy Difference 

This section presents an optimization problem, considering the minimum difference of strain energy between cables and 

struts, for the determination of self-equilibrated configurations of tensegrity structures. Some member forces can be 

directly specified by the designers satisfying the self-equilibrium equations. The proposed method is an extension of the 

same idea for cable nets to the cases of tensegrity structures. 

Let 0

il  and 
il  respectively denote the lengths of member i at the unstressed and stressed states, and Ai is its 

cross-sectional area. E is Young’s modulus, which is assumed to be the same for all members. The force si of member i 

can be defined as si = EAiεi. Hence, if we assume that the absolute value of the strain is fixed at ε , and si can be adjusted 

by varying Ai.  

Let T),,( z
k

y
k

x
kk vvv=v  denote the force vector of member k . The axial force vector for structure is combined as 

T T T T
1 2( , ,..., )m=v v v v                 (1) 

iB  defines the topology of member i connected to free nodes, 
il  can be computed as 

|| ||i i il = −B x d                         (2) 

where x is the coordinate vector and id  is the coordinate vector of the fixed node connected to member i. Combining iB  

for each member as T T T

1[ ,..., ]m=B B B , self-equilibrium equation of the structure can be written as 

0Bv =                   (3) 

Note that the variables in the proposed approach are not the scalar values of the member forces, but the components of 

the force vectors. The symmetry constraint can be written as follows with respect to the force vector v  

0Sv =                   (4) 

Eqs.  (3) and (4) lead to the following linear equation with respect to v  

0Cv = ,  where [ ]TTT ,SBC =               (5) 

From which, there are 3 rank( )mβ = − C  independent member forces in total that can be arbitrarily specified.  

To determine the configuration of a tensegrity structure with some given member forces, in terms of cross-sectional 

areas, we consider the following optimization problem 

        (A)   Minimize 2 0 2 0

cables struts

/ 2 / 2i i i iEA l EA lε ε−∑ ∑  

               Subject to  0(1 ) || ||i i i il lε+ = = −B x d  

The variables involved in problem (A) are the nodal coordinates x of the free nodes. It was proved in [2] that the 

optimal solution of problem (A) corresponds to the structure at the state of self-equilibrium. Hence, the self-equilibrated 

configuration can be determined by solving the problem (A). It should be noted that the constraint may not be 

differentiable at some points at the boundary of the feasible region. Therefore, difficulty arises in applying non-linear 

programming to this problem, because differential (sensitivity) coefficients are necessary but they are unavailable at these 

points. 

The difficulty in nondifferentiability of the constraints can be avoided, by using the primal-dual interior-point methods, 

because the solution monotonically converges at the interior point of the feasible region. For this purpose, the constraint in 

problem (A) is rewritten as follows to define the feasible region F(A) 
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0( ) (1 ) i iF A l lε= + ≥  for cables 

 0(1 ) i il lε+ ≤      for struts                     (6) 

The process of determining self-equilibrated configurations of tensegrity structures by solving problem (A) within the 

feasible region defined in (6) is summarized as follows: 
 
Form-finding algorithm 1: 

Step 0:   Specify topology, assign member type (cable or strut) to each member, and define constraints. 

Step 1:   Specify cross-sectional areas for β  members. 

Step 2:  Assign ε , and compute Ai for the remaining m − β each member. 

Step 3:  Use primal-dual interior method to solve problem (A) to determine the configuration in terms of nodal 

coordinates x. 
 
For the cable nets, which are special cases of tensegrity structures with all members in tension, the problem (A) is 

convex, and therefore, the primal-dual interior method converges at the global optimal solution corresponding to the 

self-equilibrated configuration[3]. Moreover, numerical examples in [2] showed that this approach can find the 

configurations precisely for tensegrity structures in some cases, however, this cannot be guaranteed since the problem (A) 

for them turns out to be non-convex. 

 

3. Self-equilibrated Configuration in Direct Graph 

Tensegrity structures can be easily modeled as directed graphs, since their members are straight and carry only axial 

forces, either tension or compression. The nodes and members of a structure correspond to the vertices and edges of a 

graph. The authors have proposed a direct approach based on this basic idea to have direct control over member directions 

of the structures, by consecutively specifying independent components of member force and coordinates[4]. However, the 

number of variables that need to be specified may turn out to be much greater than expected, especially for complicated 

structures. This motivates us to consider the optimization problem presented in this section to help designers out from the 

tedious tasks, while reserving advantages of the direct approach. 

 

3.1 Formulations 

The direction kv  of a member is defined as shown in Figure. 2. Suppose that member k  connects the nodes i  and j  

where ji < . We define that kv  is directed from node i  to node j  if the member is a cable, as shown in Figure. 2(a), and 

from node j  to i if a strut, as shown in Figure. 2(b).   

 Let T[ , , ]
yx z

k k kkd d d=d  denote the coordinate difference vector of member k . It is directed from node i  to node j  for 

ji < . Since kd  and kv  are parallel to each other, the following relation is obtained from the condition that the vector 

product of the two vectors should vanish: 

[ ] 0dTvvT =− kkk )(diag)(diag ,  where

















=
001

100

010

T           (7) 

By assembling (7) through all members, and by substituting kd  by the nodal coordinate vector x  for the whole structure, 

we can obtain the following constraints with respect to x : 

=Fx 0                   (8) 

Note that F  is a function of v . 

The constraint on v in (5) has to be strictly satisfied, and is so called hard constraint. Since C  does not usually have 

full rank, some components of v  can be arbitrarily specified as discussed in [4]. However, for the structure with large 

number of members, it may become much difficult to assign appropriate values to all these unknown parameters to obtain 

an expected shape. This motivates us to present an effective approach to deal with this problem taking advantage of 

optimization techniques. 

Let v  denote the target value of v . The linear relations with respect to the components of v  that should be preferably 

and approximately satisfied, called soft constraints, are assigned as 

 

 
(a) Member direction in tension  (b) Member direction in compression 

Figure 2.  Definition of the direction of member force vector. 
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0Rv =                   (9) 

Note that symmetry properties can also be considered as soft constraints, in stead of hard constraints adopted in the 

paper. Hence the objective function )(vE  to be minimized is defined as 

( ) ( ) )()(
2

1

2

1
)( IITIT

RvWRvvvWvvv +−−=E           (10) 

where I
W  and II

W  are diagonal weighting matrices that have the weight coefficients I
iw  and II

iw  at the thi diagonal 

entries, respectively. By increasing I
iw  and II

iw , the deviation of the thi component iv  of v  from its target value and the 

error of the thi soft constraint, respectively, can be reduced. 

  The problem is formulated as 

         (B)  Minimize )(vE  

               Subject to 0Cv =  

The problem (B) is a convex quadratic programming problem with linear equality constraints, and therefore, it can be 

easily solved using the Lagrangian multiplier approach formulated as 

Cvµvµv
T)(),( += EL              (11) 

where µ  denotes the vector of Lagrange multipliers.  The stationary conditions of L  with respect to v  and µ  lead to 











=















 +
0

vW

µ

v

OC

CRWRW
ITIITI

            (12) 

where O  is a null matrix. v  and µ  can be obtained by solving the linear equations (12). Note that sufficient number of 

force components is needed in the objective function to prevent singularity. The whole process of determination of 

self-equilibrated configurations for tensegrity structures by solving the problem (B) is summarized as follows: 
 
Form-finding algorithm 2: 

Step 0:   Specify the topology of the tensegrity structure. 

Step 1: Construct the matrix B  and specify the hard constraints. Assemble them to obtain the linear constraints 

0Cv = . (Eq. (5)) 

Step 2: Assign the target force vector v , the soft constraints (9), and the weights I
iw  and II

iw , to  define the 

objective function )(vE . (Eq. (10)) 

Step 3:  Solve (12) for v  and µ . 

Step 4: Construct F  from v  to formulate the self-equilibrium equation =Fx 0  with respect to the nodal 

coordinates x . (Eq. (8)) 

Step 5:  Compute the rank r  of F  and specify dn rη = −  independent components of nodal coordinates to 

determine configuration of the structure in terms of x [4]. 

  

3.2 Numerical Example: two-stage tensegrity structure 

The capability of the proposed method for controlling the shapes and forces of tensegrity structures is demonstrated by 

a two-stage tensegrity. The structure as shown in Figure. 3 consists of 6 struts and 24 cables. To find appropriate target 

values of the force components as in Step 2 in Algorithm 2, the structure is constructed from the icosahedron as shown in 

Figure. 3(a). Note, in Figure. 3(b), that most of the cable members are omitted for clarity. 

Topology of the structure defined by the relation between the node numbers and member numbers are listed in Table 1, 

where the number at the thj  column of the thi row indicates the member number that connects nodes i  and j , and an 

italic number indicates a strut. In the example, rotational symmetry about z-axis is assigned as hard constraints. 

From the equilibrium at each node of the structure in Figure. 3(b), the target force vectors of the cable members are 

listed in Table 2. The objective function is given as 

       T

1

cables

1
( ) ( ) ( )

2
i i i iE = − −∑v v v v v              (13) 

where no soft constraint is considered. Solving the problem (B) in (12) with the objective function in (13), the force 

vectors are derived as listed in Table 3. It can be observed in Table 3 that the final solution for the force vectors is only 

slightly different from their target values obtained from similarity with member directions of the icosahedron. This shows 

high similarity of the icosahedron and the structure considered here. 

Taking symmetry conditions in (4) as hard constraints, we have 32)rank( =F . Since the number of nodes n  is 12, there 

are four coordinate components in total that can be arbitrarily specified. Suppose that they are given as 

)05.1,0,0,0(),,,( 2111 =xzyx , self-equilibrated configuration of the structure is obtained as shown in Figure. 3(c)-(e). 
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(a) Icosahedron    (b) Example structure  (c) Top view                (d) Side view         (e) Bird view 

Figure 3.  Similarity between the icosahedron and a tensegrity. 

 

Table 1.  Topology of the tensegrity defined by the relation between the node numbers and member numbers 

 1 2 3 4 5 6 7 8 9 10 11 12 

1 · 1 3 4 9 · · 10 · · · · 

2 1 · 2 · 5 7 · · 11 · · · 

3 3 2 · 8 · 6 12 · · · · · 

4 4 · 8 · · · 25 28 · 22 · · 

5 9 5 · · · · · 26 29 · 23 · 

6 · 7 6 · · · 30 · 27 · · 24 

7 · · 12 25 · 30 · · · 13 · 21 

8 10 · · 28 26 · · · · 19 14 · 

9 · 11 · · 29 27 · · · · 20 15 

10 · · · 22 · · 13 19 · · 16 18 

11 · · · · 23 · · 14 20 16 · 17 

12 · · · · · 24 21 · 15 18 17 · 

Table 2.  Target values of force vectors of the cable members. 

Member (1) (2) (3) (4) (5) (6) (10) (11) (12) (13) 

x
iv  1 –0.5 0.5 –0.309 0.309 0 0.5 0.309 –0.809    0.309 

y
iv  0 0.866 0.866 –0.178 –0.178 0.357 –0.646 0.756 –0.110 –0.178 

z
iv  0 0 0 0.934 0.934 0.934 0.577 0.577 0.577 0.934 

(14) (15) (16) (17) (18) (22) (23) (24) (25) (26) 

0 –0.309 0.5 0.5 1 0.309        –0.809       0.309 0       –0.809 

0.357 –0.178 –0.866 0.866 0 0.756 –0.110 –0.178 0.934 –0.467 

0.934 0.934 0 0 0 0.577 0.577 0.934 -0.357 –0.357 

(27) (28) (29) (30) 

0.809      0.809      0        –0.809      

–0.467 –0.467 0.934 –0.467 

 

–0.357 –0.357 –0.357 –0.357 

Table 3.  Force vectors at self-equilibrium state. 

Member (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
x
iv  0.982 –0.375 0.607 –0.202 0.327 –0.125 0.750 1.214 –1.963 0.577 

y
iv  –0.134 0.917 0.783 –0.261 –0.045 0.306 –1.834 1.567 0.268 –0.656 

z
iv  0 0 0 0.934 0.934 0.934 –1.401 –1.401 –1.401 0.467 

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20) 

0.280 –0.857 0.327 –0.125 –0.202 0.375 0.607 0.982 0.750 1.214       

0.828 –0.172 –0.045 0.306 –0.261 –0.917 0.783 –0.134 –1.834 1.567 

0.467 0.467 0.934 0.934 0.934 0 0 0 –1.401 –1.401 

(21) (22) (23) (24) (25) (26) (27) (28) (29) (30) 

–1.964 0.280 –0.857 0.577 –0.048 –0.732 0.780 0.780 –0.048  –0.732  

0.268 0.828 –0.172 –0.656 0.873 –0.478 –0.395 –0.395 0.873 –0.478 

 

–1.401 0.467 0.467 0.467 –0.467 –0.467 –0.467 –0.467 –0.467 –0.467 
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4. Strongest Structure with Given Configuration 

Many tensegrity structures have more than one independent mode of member forces, such that distribution of member 

forces can be controlled in some extents as long as the self-equilibrium conditions are satisfied. Since stiffness of a 

tensegrity structure is greatly influenced by its member forces, this also gives us the chance to achieve higher stiffness for 

the structure. This section is to present a bi-objective optimization problem for finding the optimal distribution of member 

forces, which leads to the strongest structure (with maximum stiffness), and have closely uniform member forces as well. 

Note that we assume that configuration of the structure is given, besides those assumptions listed at the end of Section 1. 

 

4.1 Self-equilibrium and Stiffness 

  Let s
m∈ ℜ  denote the vector of member forces. Self-equilibrium equation of the structure can be written as follows[5] 

=Ds 0                 (15) 

where the trivial vector 0 on the right-hand side of the equation indicates that there is no external load applied to the 

structure, and the matrix D
dn m×∈ ℜ  is determined by the geometry of the structure, i.e., the connectivity and the nodal 

coordinates. Hence, D is a constant matrix from the assumption that topology and configuration of the structure are known 

a priori. 

  Let R denote the rank of D. If R<m, then there are m-R independent modes if  of member forces satisfying the 

self-equilibrium equation: i =Df 0 . Member forces of the structure can be written as a linear combination of these modes 

through the coefficients
i

α : 

1
m R

i ii α−
=∑= =s f Fα              (16) 

  The tangent stiffness matrix K , second-order derivative of the total potential energy, can be written as sum of the linear 

stiffness matrix 
E

K  and the geometrical stiffness matrix 
G

K  as follows[5] 
E G= +K K K               (17) 

where 
E

K  is always positive semi-definite for the structures having positive axial stiffness; and the positive definiteness 

of 
G

K  depends on the distribution of member forces.  

A non-trivial displacement is called mechanism if it does not change the member lengths. Let M denote the mechanism 

matrix for which the ith column is the ith independent mechanism. The quadratic form Q of K with respect to M turns out 

to be that of 
G

K  as follows, because 
T E =M K M O  holds[6, 7]  

T T G= =Q M KM M K M             (18) 

Q is positive definite if the structure is stable when no term higher than second-order terms of the total potential energy are 

considered; and it is sufficient to consider the positive definiteness of Q in the stability investigation of tensegrity 

structures, if the forces are small enough compared to the member stiffness[6]. Since M is constant when the geometry of 

the structure is determined, stability and stiffness of the structure is directly related to the distribution of member forces. 

 

4.2 Maximum Stiffness and Uniform Member Forces 

In this subsection, we formulate an optimization problem with two objectives: (a) maximization of the stiffness, and (b) 

minimization of the deviation of the member forces from the target values. Moreover, the signs of the member forces, i.e., 

tension for cables and compression for struts, are also incorporated as constraints. 
 

Maximum Stiffness 

From the stability criterion based on (18), the stability and stiffness of tensegrity structures can be defined by the 

smallest eigenvalueλ  of Q, when the member stiffness is large enough compared to the level of member forces. This is 

because that λ  is also the smallest eigenvalue of K in this case. For simplicity, we assume that all members have infinite 

stiffness so that stability of the structure can be verified by the sign of λ : when λ  is positive, the structure is stable; when 

it is negative, the structure is unstable. Since λ  is the minimum eigenvalue of K, or equivalently Q, its corresponding 

eigenvector is the weakest direction for the structure to deform. Hence, to have a stronger structure, a distribution of 

member forces resulting in an increase ofλ  is to be found.  
 

Uniform Member Forces 

Uniform distribution of member forces has many advantages in design, construction and maintenance of tensegrity 

structures. For example, fabrication costs and complexity of construction process can be significantly reduced, if 
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cross-sectional areas of the members are the same for the same type of them; moreover, these members have the same 

safety factor against member failure.  

The target member forces are denoted by s . The difference −s s between s  and s  is to be minimized as the other 

objective function. The least square method can simply give the optimal solution as follows if only this objective function 

is considered 
+=s FF s                (19) 

where
+
F denotes the generalized inverse of F. 

Note that both of the two objectives mentioned above are described in terms of member forces. However, they cannot 

have global optimal solutions at the same time. A trade-off between them is generally required. 
 

Constraints 

The strain energy Π  of the structure can be written as 
2 /2i i i is l A EΠ = ∑              (20) 

For simplicity, we assume that all members have the same / 2i i il A E , which is denoted as a.  Hence, we have 
T2

i aa s =Π = ∑ s s              (21) 

It is always desirable to obtain the strongest structure within a limited energy to be introduced to the structure. For this 

purpose,  Π  is used as a specified value for external energy introduced to the structure, where the constant a is ignored 
T = Πs s                (22) 

Moreover, it is also expected that the member forces conform to the types of the members; i.e. tension for cables and 

compression for struts. Let 
c
s  and 

s
s  denote the member forces of cables and struts. Then we will have 0

c >s  and 

0
s <s for the constraints on the signs of the member forces. 

 

Formulation of Optimization Problem 

Based on the discussions on objective functions and constraints, the multiobjective optimization problem for force 

design of a tensegrity structure with give configuration is formulated as  

     (C)  Minimize  λ−  and −s s        

        Subject to  
c ≥s 0  

          
s ≤s 0  

          
T = Πs s  

A multiobjective optimization problem may have compromise solutions, called Pareto optimal solutions, in which it is 

impossible to improve all of the objectives at the same time. There have been many methods developed for this kind of 

problems, among which we adopt the constraint approach to find the Pareto optimal solutions as candidates for the 

assistance of decision making.  

 

4.3 Example 

In this section, we consider the force design of a special tensegrity structure, called tensegrity grid, proposed by Motro 

[8]. The tensegrity grid in Figure. 2 consists of 38 nodes and 115 members, is used an example structure. Height of the 

structure is 5.0, and the projection of each strut on xy-plane has length of 5.0 as well. There are eight independent modes 

of member forces in total, and the coefficients are to be determined for the presentation of member forces as in (16) by 

solving the problem (C). 

In order to find the Pareto optimal solutions, the constraint approach is adopted: the second objective function −s s  of 

the problem (C) is incorporated into the constraints so that the original multiobjective problem is transformed into a 

single-objective problem as 

      (D)  Minimize  λ−        

        Subject to:  ε− ≤s s  

           
c ≥s 0  

           
s ≤s 0  

           
T = Πs s  

where ε  is the upper bound of the difference between the member forces from their target values. The set of Pareto 
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optimal solutions for the original bi-objective optimization problem (C) can be derived by solving the revised 

single-objective optimization problem (D), where ε  for −s s� � is varied gradually and consecutively.  

For the revised single-objective problem (D), we need the lower and upper bound of ε . The lower bound of ε  can be 

determined by solving problem (C) ignoring the objective function λ− ; it can also be easily found as the least square 

solution in (19). The upper bound of ε  can be derived by solving the problem (C) to minimize λ−  only, ignoring the 

other objective function. The function fmincon( ) in the Optimization Toolbox of MATLAB [9] is used to solve the 

single-objective problem (D). fmincon( ) is a nonlinear programming routine, which attempts to find a constrained 

minimum of a scalar function with several variables, and starts from an initial estimate.  

The target values for the member forces of struts and cables are set to –1 and 1, respectively. If the member forces 

exactly agree with the target values, the revised strain energy introduced to the structure is 
T

101=s s  because there are 

101 struts and cables in addition to 14 bars on the boundary carrying no forces. Hence, we set 101Π = for the problem. 

Note that these values are purely numerical without explicit physical meaning. The coefficients 
i

α  for the force modes 
i
f  

are the variables to be determined in the problem. The initial solution to start the fmincon( ) is determined by the least 

square method as in (19).  

 

 
     

      (a) Top View        (b) Bird View 

Figure 4. An example of tensegrity grid.  

0.016 0.017 0.018 0.019 0.02 0.021 0.022 0.023

6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

 
Figure 5. Pareto optimal solutions of problem (C) for maximum stiffness and uniform member forces. 
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The difference ε  between the member forces and their specified target values is distributed in the region [6.6849, 

8.0662]. ε  is varied in this region to find its corresponding maximum λ  by solving the problem (D). This way, we obtain 

the set of Pareto optimal solutions, which are plotted in Figure. 5. It can be observed from the figure that a trade-off 

relation between the two objective functions. Basically, larger difference between the member forces and the target forces 

leads to stronger structure, but they do not have linear relation. In the force design process, a compromise between the two 

objectives should be made. Curve of the Pareto optimal solutions can provide direct information to help designers to have 

deeper understanding of the structure and to assist their decision making in the force design. 

 

5. Discussions and Conclusions 

Three optimization approaches for shape design and force design have been discussed in this study. The first two 

approaches are for the determination of configurations and member forces at the state of self-equilibrium, by (1) 

minimizing difference between strain energy in cables and in struts, and (2) minimizing deviation of force components 

from their target values for the structures modeled as directed graphs; The third approach is to find the optimal 

distribution of member forces that leads to the strongest structure (with maximum stiffness) as well as minimum deviation 

of member forces from their target values, where configuration of the structure is assumed to be known.  

The first proposed method by minimizing difference of strain energy between cables and struts can have precise control 

over magnitudes of some member forces. The difficulty in nondifferentiability at the boundary of the feasible region can 

be avoided by using the primal-dual interior-point methods. The problem for cable nets, which is composed of members 

carrying only tension but no compression, is convex, and hence, the primal-dual interior-point methods can efficiently 

find the global optimal solution for the determination of their configurations and member forces. However, it may fail in 

some cases of tensegrity structures since the problem for them is intrinsically non-convex. 

In the second approach, the authors’ method of directly assigning force components has been extended to the structures 

with moderately large numbers of nodes and members. We have the following discussions for the proposed method. 
 
1. Member directions can be directly controlled by considering force components as variables, which is different from 

other approaches for the control of magnitudes of member forces or force-to-length ratios (force densities). 

2. The force components are found as solutions of a convex quadratic programming problem with linear equality 

constraints, so that its solution can be easily obtained by solving linear equations derived from stationary conditions 

of the Lagrangian. 

3. The configuration and forces of the tensegrity structures at the state of self-equilibrium can be directly controlled by 

modifying the target values and soft constraints on force components. 
 
As discussed in the third approach, it is always desirable that the structure has stiffness as high as possible, in the design 

of a tensegrity structure subjected to given conditions. Moreover, nearly uniform distribution of member forces has many 

advantages, such as reduction of fabrication costs as well as complexity of construction process, and having the same 

safety factor for the failure of members.  

For the structures having multiple force modes, it was shown in the study that we have the freedom to choose the 

member forces to influence mechanical properties of the structures. A multiobjective optimization problem was presented 

to maximize the stiffness and to minimize the difference between the member forces and their target values, subject to the 

constraints on given strain energy and types of members.  

It is clear from the numerical example in Section 4 that distribution of member forces has significant influence on the 

stiffness of the structure, moreover, the highest stiffness and the nearly uniform distribution of member forces cannot be 

obtained at the same time. Presentation of the curve of the Pareto optimal solutions enables designers to select a solution 

from the candidate solutions according to their preferences. 
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