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Abstract 
Optimal shapes are found for the flange of an H-beam. A forced displacement is given at the free end of the cantilever 
beam so that the average deformation angle reaches the specified value. The objective function to be maximized is the 
dissipated energy, and a constraint is given for the maximum equivalent plastic strain at the fixed end. Globally optimal 
solutions are searched by a simulated annealing, which is successfully combined with a commercial finite element 
analysis code. It is shown that the energy dissipation capacity is significantly improved by optimizing the flange shape. 
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1 Introduction 

Recent rapid developments of computer technology and optimization algorithm enabled us to optimize real-world 
structures under constraints that are required in design practice. In addition to optimizing structural system, it is possible 
to find optimal shapes of structural components or parts discretized to finite elements; e.g., shapes of suspension of 
automobiles, airfoil wings, and so on. In the civil engineering field, however, shape optimization of the structural 
components has not been well investigated. In this study, we present an approach to shape optimization of the flange of 
an H-beam to maximize the plastic energy dissipation capacity.  

In response to brittle fracture near the beam-to-column flange groove welds in the 1994 Northridge earthquake, a 
wide variety of beam-to-column connection concepts have been developed. Among them, the Reduced Beam Section 
(RBS) connection attained much popularity, particularly in the West Coast of U.S., and various shapes such as constant 
cuts, tapered cuts and circular cuts have been investigated [1,2].  

In an RBS connection, portions of the beam flanges are selectively trimmed in the region adjacent to the 
connection in order to force a plastic hinge to be located within the reduced section, and thereby reduce the likelihood 
of fracture occurring at the flange groove welds and the region of the surrounding base metal. Optimizing the shape of 
the RBS cut can increase the energy dissipation capacity of the connection, and further minimize the likelihood of 
fracture in the flange of the RBS by realizing widely distributed plastification with less maximum plastic strain. 

Optimization of elastoplastic structures has been extensively investigated in 1990s including sensitivity analysis of 
path-dependent problems [3,4]. Approximation methods such as response surface method are currently applied to an 
elastoplastic optimization problem, because it usually has multiple local optima and application of gradient-based 
approach is not desirable. Heuristic approaches have been developed to obtain approximate optimal solutions within 
reasonable computational cost, although there is no theoretical proof of convergence [5]. The Simulated Annealing (SA) 
is categorized as a single-point-search heuristic approach that is based on local search and improves ability of finding 
globally optimal solution by allowing the move to a non-improving solution with a specified probability.  

In this study, we present a method of optimizing shapes of beam flanges based on SA, which is successfully 
combined with a commercial finite element analysis code called ABAQUS [6]. The objective function to be maximized 
is the dissipated energy under forced displacement. Constraints are given for the maximum equivalent plastic strain. It is 
shown in the numerical examples that the energy dissipation capacity can be significantly improved by optimizing the 
shape of the flange. 



2 Optimization problem and optimization method 

Consider a cantilever beam that represents a half of a beam in a building frame. Optimal flange shapes are to be found 
under the static loading condition defined by forced displacement at the free end. The beam is discretized into finite 
elements. The shape of the flange is defined by a cubic spline curve, and the design variables are the locations of the 
control points. Let x denote the vector consisting of the variable coordinates of the control points. The upper and lower 
bounds for x are denoted by xU and xL, respectively. A component of a vector is indicated by subscript; i.e., x = {xi}. 

The objective function is the dissipated energy E(x) throughout the loading history. Since the final deformed state 
is defined by the displacement, an unfavorable local plastification can be avoided by maximizing E(x). The upper bound 

pε  is given for the maximum equivalent plastic strain pε  among the elements at the fixed end to prevent fracture at 
the beam-to-column flange groove welds. Hence, the optimization problem is formulated as 

Maximize E(x) 
subject to p pε ε≤  (1) 

  L U
i i ix x x≤ ≤ , ( 1, , )i m=  

where m is the number of design variables. 
The SA for continuous variables by Goffe et al. [7] is used for optimization. The main feature of this method is that 

it controls the size of the most promising area defined by the maximum distance to the neighborhood solutions, which is 
initially moderately large, gradually adjusted to an appropriate value, and finally reduced to reach the global optimum. 
The constraint p pε ε≤  is incorporated by a penalty function approach.  

4 Optimization results 

Optimal flange shapes are found for a wide-flange cantilever beam with a cross-section of H−150×150×7×10 as shown 
in Fig. 1.. The length of the cantilever beam is 700 mm. The normal flange shape is shown in Fig. 2. The flange width is 
to be varied at the 300 mm region from the welded section (fixed end). The variation is modeled by a cubic spline curve 
and maintains the symmetry with respect to the flange center line. The control points are given in Fig. 2. The location of 
the control point 6 is fixed, and the points 0−5 can move only in the y-direction; i.e. the number of design variables is 6 
considering the symmetry condition with respect to the x-axis. The upper and lower bounds of the variables are 75 mm 
and 25 mm, respectively. Hence, only reduction is allowed for the flange width at the control point. Optimization is to 
be carried out to maximize the dissipated energy under static load up to the displacement 14 mm at the free end; i.e., the 
average deformation angle is 0.02. 

 
Figure 1. Flange cross-section.                       Figure2. Normal flange shape. 

 
Elastoplastic analysis is carried out by ABAQUS Ver. 6.5.1 [8]. The S4R element, which is a 4-node quadrilateral 

thick shell element with reduced integration and a large-strain formulation, is used for modeling. The total numbers of 
elements and freedom of displacement are 504 and 3306, respectively. The elastic modulus is 2.05×105 N/mm2 and 
Poisson's ratio is 0.3. The yield stress is 235.0 N/mm2 and the hardening ratio is 0.001. The kinematic hardening with 
Prager's rule is adopted.  

ABAQUS analysis is iteratively called from the SA algorithm. As shown in Fig. 3, the SA program generates new 



coordinates of the control points, which are the design variables of the optimization problem. This information is 
transmitted to ABAQUS preprocessing module that creates the beam model. The entire preprocessing module is 
controlled by a Python script language [8] that serves as the programming interface of ABAQUS. The control script 
consists of the following six steps: 
1. Two parts, i.e., a flange part and a web part, are created. The cutout shape of the flange is determined using a cubic 

spline curve in reference to the control points. 
2. Materials and section geometries are defined, and assigned to respective parts. 
3. Two instances of the flange part, which represents the upper and lower flanges, and a instance of the web part are 

imported to form an assembly. The assembly is further merged to a single beam assembly. 
4. Boundary and loading conditions are defined for the analysis. 
5. The beam assembly is discretized to S4R quadrilateral shell element. 
6. An analysis job is submitted to ABAQUS. 

 
Figure 3. Flowchart of ABAQUS analysis. 

 
In the analysis, ABAQUS/Standard is used for solving the numerical problem defined in the ‘inp’ file created by 
ABAQUS preprocessing module. An ‘odb’ file, which contains the analysis results, is generated. A postprocessing 
module also written by the Python script language is used to extract the necessary data such as the dissipated energy and 
the maximum equivalent plastic strain near the beam-column connection from the ‘odb’ file. The data are returned to 
the SA program for the new round of iteration. A PC with Intel Xeon 3.4 GHz CPU and 2GB RAM is used for the 
computation. 
 

     
(a) Case 1                      (b) Case 2 

     
(c) Case 3                      (d) Case 4 

Figure 4. Optimal shapes for Cases 1−4. 



The Optimal shapes for Cases 1−4 corresponding to p 0.001ε = , 0.002, 0.004 and 0.008 are shown in Figs. 
4(a)−(d). Basically, the optimal shapes share a similar pattern featured with a single concave region, which has two 
functions: (1) shift the maximum deformation from the welded section to the middle sections, and (2) increase the 
plastification area for the specified average deflection angle. It should also be noted from Fig. 4 that the specific 
concave shapes strongly depend on the value of pε . Obviously, larger reduction of the flange width is needed for 
smaller value of pε  to suppress the deformation at the welded section for the specified deflection at the free end. 

Figs. 5(b)−(e) show the distributions of the von Mises stress of the beams with concave flanges for Cases 1−4, 
respectively, where darker color represents larger values. For the comparison purpose, the distribution of the von Mises 
stress and the equivalent plastic strain of normal beam with uniform flange width (referred to as Case 0 hereafter) are 
also plotted in Fig. 5(a). Distributions of equivalent plastic strain are also plotted in Figs.6(a)−(e). It is seen from the 
figures that the maximum equivalent plastic strain of Case 0 exists at the welded section, whereas it is successfully 
shifted to the middle section at the concave region for Cases 1-4. The distribution of the von Mises stress shows that the 
lengths of the plastification region of Cases 1-4 are longer that that of Case 0. This is particularly because the optimal 
concave shape allows longer plastified region by realizing a smooth deformed shape against the specified average 
deflection angle. Owing to the enlarged lengths, the total plastified areas of the flange of Cases 1-4 are not much smaller 
than that of Case 0, although the concavity decreases the flange width of the plastified region. 

       
(a) Case 0                 (b) Case 1                 (c) Case 2 

    
(d) Case 3                (e) Case 4 

Figure 5. Distribution of von Mises stress. 
 

       
(a) Case 0                 (b) Case 1                 (c) Case 2 

    
(d) Case 3                (e) Case 4 

Figure 6. Distribution of equivalent plastic strain. 
 
The dissipated energy E and the maximum equivalent plastic strain pε  at the fixed end are shown in Table 1, 

where the average deflection angle reaches 0.02, and the results are listed for the optimal solutions of Cases 1−4. 
Apparently, the dissipated energy decreases with the decrease of allowable maximum equivalent plastic strain; i.e., the 
objective function is smaller for stricter constraints in a maximization problem. For the comparison purpose, the values 



of E and pε  for Case 0 are also listed in Table 1. It is seen that the dissipated energy of Case 0 is not much different 
with those of Cases 1-4, whereas its maximum equivalent plastic strain is significantly larger compared to those of 
Cases 1-4. For instance, almost the same (with a difference not greater than 5%) dissipated energy of Case 0 is achieved 
by the optimal shape for Case 4 with less than half value of pε  (0.008 for Case 4 and 0.017 for Case 0). 
 

Table 1. Dissipated energy E and maximum equivalent plastic strain pε  at the connection. 

Case ( pε ) E pε  
Case 0 (no limit) 950 0.017 
Case 1 (0.001) 875 0.001 
Case 2 (0.002) 893 0.002 
Case 3 (0.004) 900 0.004 
Case 4 (0.008) 912 0.008 

 
Table 2. Dissipated energy E of the normal beam considering the upper bound pε   

for the equivalent plastic strain at the fixed end. 

pε  E rotation angle 
0.001 36 0.006 
0.002 84 0.007 
0.004 188 0.008 
0.008 404 0.012 

 
To further demonstrate the effect of flange shape optimization, the dissipated energy E and the allowable average 

deflection angle of the normal beam for p 0.001ε = , 0.002, 0.004 and 0.008 are listed in Table 2. It can be observed by 
comparing Tables 1 and 2 that the dissipated energies of normal beams are far smaller than those of the optimal beams 
for the same value of pε . For p 0.008ε = , e.g., the dissipated energy is about half of the optimal value (Case 4 in 
Table 1). Hence, the energy dissipation capacity is significantly increased by optimization. 

The resulting average deflection angles of the normal beam at which p 0.001ε = , 0.002, 0.004, and 0.008 are 
0.006, 0.007, 0.008 and 0.012, respectively, as shown in Table 2, which are all significantly smaller than 0.02 for the 
optimal solutions. Contrary, if the normal beam is deformed to 2% average deflection angle, then the value of pε  is 
0.017 (Case 0 in Table 1), which is much larger than the upper bound for the optimal beams. Therefore, the beam with 
optimal flange shape is able to avoid large equivalent plastic strain at the welded section, so that its deformation 
capacity increases significantly. 

The reaction forces of the normal and optimal beams are plotted in Fig. 7 with respect to the average deflection 
angle. It can be confirmed that a smaller pε  leads to a weaker beam in terms of initial stiffness and strength. However, 
they are only slightly reduced by optimization. 
 

Figure 8. Force displacement relation.          Figure 9. History of objective function by SA. 
 



The convergence property of the objective function is shown in Fig. 9 for Case 1. As is seen, a large reduction of the 
objective value is allowed in the initial stage, and the objective value gradually converges to the optimal value. Note 
that almost optimal solutions are found within 6000 analyses. The total number of analysis is 11761 for Case 1, and the 
elapsed time for optimization is 63.06 hours (20 sec. per analysis). However, only 15% is used for analysis, and 
remaining portion of the time is; 5% for ABAQUS preprocess, 5% for ABAQUS postprocess, 75% for ABAQUS 
license checking, and the time used for SA algorithm is negligible. 

3 Conclusions 
Optimal flange shapes have been found for an H-beam under forced displacement. The objective function to be 
maximized is the plastic dissipated energy. The constraint is given for the maximum equivalent plastic strain at the 
welded section (fixed end) at the final state so that the forced displacement reaches a specified value at the free end. The 
conclusions drawn from this study are summarized as 
1. Optimal shapes can be successfully obtained by SA in conjunction with a commercial finite element analysis code. 
2. The optimal shape strongly depends on the upper bound of the equivalent plastic strain, which is to be specified in 

practice based on the performance required for each frame. 
3. The optimization results under monotonic loading condition show significant improvement of the energy 

dissipation capacity compared with the normal beam with uniform flange width. 
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