
SYMMETRIC PRISMATIC TENSEGRITY STRUCTURESJ.Y ZHANG1;2, S.D. GUEST1, M. OHSAKI21Dept. of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UnitedKingdom2Dept. of Arhiteture and Arhitetural Engineering, Kyoto University, Kyoto-Daigaku Katsura,Nishikyo, Kyoto 615-8540, JapanE-mail: is.zhang�arhi.kyoto-u.a.jp sdg�eng.am.a.uk ohsaki�arhi.kyoto-u.a.jpABSTRACTThis paper presents a simple and eÆient method to determine the self-equilibrated on�gurationsof prismati tensegrity strutures with dihedral symmetry. It is demonstrated that stability ofprismati tensegrity strutures is not only determined by the onnetivity manner of the members,but also sensitive to the height/radius ratio and the sti�nss/prestress ratio. A atalogue of sym-metri prismati tensegrity strutures with relatively small number of members is presented basedon the stability investigations.1. INTRODUCTIONIn this paper, we desribe a study into the on�guration and stability of prismati tensegritystrutures with dihedral symmetry. The simplest example of this lass of strutures is shown inFigure. 1. This lass of strutures was studied by Connelly and Terrell [1℄: they showed that theexample shown in Figure. 1, and other prismati tensegrity strutures where the horizontal ablesare onneted to adjaent nodes, are guaranteed to be stable, regardless of the levels of prestressand material properties. These strutures are alled super stable. However, the stability of otherstrutures in this lass was not addressed, and is the subjet of this paper.We show that, in general, the stability of prismati tensegrity strutures depends not only on theonnetivity of the members, but also on their geometry (height/radius ratio), and also on thelevel of prestress and the sti�ness of struts and ables.2. SYMMETRY AND CONFIGURATIONWe are onsidering strutures that have dihedral symmetry, denoted Dn: there is a single major n-fold rotation axis, whih we assume is the vertial, z-axis, and n 2-fold rotation axes perpendiularto this. The strutures onsist of 2n nodes, arranged in two horizontal planes, with n nodes ineah. We number the nodes from 0 to n� 1 in the top plane, and n to 2n� 1 in the bottom plane.Eah node of the struture is onneted by two horizontal ables within its own horizontal plane,and is onneted by one `vertial' able and one strut to nodes in the other plane. An example
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horizontalFig. 1: The simplest prismati tensegrity struture. The thik and thin lines denote, respetively,ables that an only arry tension, and struts that arry ompression. There are two horizontalplanes, whih have here been oloured grey to aid pereption. This struture has D3 symmetry,and is denoted D1;13 :
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N8 N9Fig. 2: All nodes onneted to node 0, N0, of an example tensegrity struture with D8 symmetry.The horizontal ables are onneted to nodes 2 and n�2 = 6, the strut is onneted to node n = 8,and the `vertial' able is onneted to node n+ 1 = 9. This struture is denoted D2;18 .showing the ables and struts onneted to node 0, N0, is shown in Figure. 2. Node N0 is onnetedby a strut to node Nn, by horizontal ables to nodes Nh and Nn�h (we assume that h � n=2) andby a vertial able to node Nn+v, where h and v are parameters that de�ne the struture. Wedenote the struture de�ned by n, h and v as Dh;vn .Eah node is transformed into exatly one other node by one of the symmetry operations inthe group (the nodes form a regular orbit). Eah symmetry operation an be represented by atransformation matrixRi, where the operation transforms nodeN0 to nodeNi. Let the oordinatesof nodes N0 and Ni be denoted by x0 and xi (2 <3) in three-dimensional spae, respetively. Theyare related by Ri 2 <3�3 as xi = Rix0 (1)where i runs from 0 to 2n � 1. The matries Ri are given in Table 1. In group representationtheory, the mapping from the symmetry operations to these matries is said to form a reduiblerepresentation for the group [2℄.To �nd a totally symmetri state of self-stress in the struture, we only have to onsider equilibriumof one node | every other node is symmetrially equivalent [3℄. We will onsider node N0. Letqh, qs and qv denote the fore densities | axial fore fi to length li ratio; i.e., qi = fi=li, of thehorizontal ables, strut and vertial able, respetively.The two nodes onneting to N0 as horizontal ables must be hosen as a pair; i.e., if Nh isseleted to onnet with N0, then symmetry requires that node Nn�h should also be hosen. Theoordinates xh and xn�h an be omputed as followsxh = Rhx0; xn�h = Rn�hx0 (2)and the axial fore vetors fh and fn�h of horizontal ables an be written asfh = fh(xh � x0)=lh = qh(Rh � I3)x0fn�h = fh(xn�h � x0)=lh = qh(Rn�h � I3)x0 (3)Table 1: Transformation matries of the dihedral group Dn. Note that eah matrix has a blok-diagonal form, where the non-zero entries our in a 2� 2 blok in the top-left and a 1� 1 blokin the bottom right. The mapping from the operations to these submatries forms an irreduiblerepresentation of the group [2℄. We use the notation Ci = os(2i�=n) and Si = sin(2i�=n).0 � i � n� 1 n � i � 2n� 1Ri 24Ci �Si 0Si Ci 00 0 135 24Ci Si 0Si �Ci 00 0 �135



where I3 denotes the 3-by-3 identity matrix.Unlike the horizontal ables, there is only one node Nn+j in the lower plane onneted to N0 as astrut or vertial able | the inverse of Rn+j (0 � j < n) is idential to itself; i.e., R�1n+j = Rn+j .The axial fore vetors fs and fv of the strut and vertial able arefs = qs(Rn+s � I3)x0; fv = qv(Rn+v � I3)x0 (4)We are interested in the ase when the struture is in equilibrium without external loads. Thus,the node N0 should be in a state of self-equilibrium:fh + fn�h + 2fs + 2fv = 0 (5)Substituting from (3), (4) and Table 1 givesAx0 = 0 (6)whereA = 2qh 24Ch 0 00 Ch 00 0 135+ 2qs 241 0 00 1 00 0 �135 + 2qv 24Cv Sv 0Sv Cv 00 0 �135 � 2(qh + qs + qv)241 0 00 1 00 0 135 (7)Notie that A has a blok-diagonal form, where the non-zero entries our in a 2� 2 blok in thetop-left and a 1� 1 blok in the bottom rightIn order for (6) to give a solution for x0 that does not lie either in the xy-plane, or along the z-axis,then both the submatries in A must be singular, and this gives the two following onditionsqv = �qsqhqv = �p2� 2Cv1� Ch (8)Sine both of qh and qv should be positive for the ables, only the positive solution is adopted.The general solution x0 of (6), the null-spae of A, is then given byx0 = rr0 24Cv � 1 +p2� 2CvSv0 35+H=22400135 (9)where r0 is the norm of the �rst vetor representing the oordinates in xy-plane, and r and H arethe radius and height of the struture, whih an have arbitrary real values.By the appliation of (1), then oordinates of all the nodes Ni of the struture an be determinedby running i from 0 to 2n� 1.3. DIVISIBILITY CONDITIONSDepending on the onnetivity of members, a prismati tensegrity struture may be ompletelyseparated into several idential substrutures that have no mehanial relation with eah other.For example, the struture D2;26 in Figure. 3 an be divided into two idential substrutures D1;13 .We will exlude divisible strutures from our stability investigation: the disonneted substrutureshave nothing to prevent relative motion. The substrutures themselves an be onsidered asindividual strutures with lower symmetry.This setion presents the neessary and suÆient onditions for the divisibility of prismati tenseg-rity strutures.
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N9(a) D2;26 (b) D1;13 () D1;13Fig. 3: An example of divisible struture D2;26 and its two substrutures D1;13 .3.1 Divisibility of Horizontal CablesSuppose that we randomly selet one node as the starting node, and travel to the next along thehorizontal ables. If we repeat this in a onsistent diretion, eventually, we must ome bak tothe starting node. The nodes and horizontal ables that have been visited in the trip are said tobelong to the same iruit. If there are more than one iruit in the plane, the horizontal ablesare said to be divisible; otherwise, they are indivisible.Denote the number of iruits of the horizontal ables in one plane by n, and the number of nodesin eah iruit by ns. Eah time we travel along a able of one iruit, we pass by h nodes, andhene by the time we return to the original node, we have passed hns nodes. Suppose that in thisiruit, we have travelled around the plane hs times, and have hene passed by nhs nodes. Thus,nsh = hsn: (10)The number of iruits ns in eah horizontal plane is given byn = nns = hhs : (11)The neessary and suÆient ondition for the divisibility of horizontal ables in the same plane isthat there is more than one iruit of nodes, n 6= 1, and hene.h 6= hs (12)Valuable information about possible substrutures an be found:� The onnetivity of the horizontal ables is hs.� The number of nodes in eah plane is ns.� There are n substrutures.Note that (12) is only the divisibility ondition for the horizontal ables, but not for the wholestruture. Divisibility of vertial ables should also be taken into onsideration.3.2 Divisibility of Vertial CablesIf the horizontal nodes are divisible, then the nodes in the iruits of horizontal ables ontainingN0 and Nn are Ciruit 1: N0; Nh; N2h; : : : ; N(ns�1)hCiruit 2: Nn; Nn+h; : : : ; Nn+(ns�1)h (13)



Ciruit 1 and Ciruit 2 are onneted by struts. If they are also onneted by ables, then thesubstruture onstruted from these nodes an be ompletely separated from the original struture.Thus the struture will be divisible if the following holds, where vs is an integer:v = vsh (14)In summary, (12) and (14) are the neessary and suÆient onditions for a divisible struture. Theoriginal struture Dh;vn an be divided into n idential substrutures Dhs;vsns .4. STABILITYIn this setion, the ritial fators for the stability of prismati tensegrity strutures are investi-gated: height/radius ratio, onnetivity, and sti�ness/prestress ratio. We will use the symmetry-adapted oordinate systems to simplify our alulations, and present the results [4, 5℄.4.1 Prestress StabilityIf we assume that the axial sti�ness of struts and ables is in�nite, then to �rst order, the only waythat the struture an deform is along the path of in�nitesimal mehanisms. Then we an de�neprestress stability as follows:If the quadrati form of the geometrial sti�ness matrix with respet to the mehanisms is positivede�nite, then the struture is said to be prestress stable. [6℄This riterion is very onvenient for the initial investigation of the stability of our strutures,beause the seletion of materials does not need to be onsidered.We will onsider the alulation in a symmetry-adapted form, where we an separately onsider theproperties of the struture in di�erent symmetry subspaes. Eah symmetry subspae orrespondsto one of the irreduible representations of the group. For the dihedral symmetry group Dn,the irreduible representations are, for n even, A1; A2; B1; B2; E1; � � � ; En=2�1, and for n odd,A1; A2; E1; � � � ; E(n�1)=2.Let � denote an irreduible representation of the symmetry group of the struture. The bloks ofthe symmetry-adapted geometrial sti�ness matrix ~KG and equilibrium matrix ~D orresponding to� are denoted by ~K�G and ~D�, respetively. The symmetry-adapted mehanisms lying in the null-spae of the transpose of ~D� are written as olumns of ~M�. Then, the blok ~A� orrespondingto the representation � of the symmetry-adapted quadrati form ~A of the geometrial sti�nessmatrix with respet to the mehanisms is~A� = ( ~M�)> ~K�G ~M� (15)The struture is prestress stable if and only if ~A� are all positive de�nite for all representations �exept for A2 and E1, whih orresponds to the rigid-body motions; and the positive de�nitenessof ~A� an be easily veri�ed beause it is a matrix with dimensions of only one or two.4.2 Critial FatorsHere, we show that the prestress stability of a prismati tensegrity struture is not only inuenedby the onnetivity of horizontal ables but also that of the vertial ables, and furthermore, issensitive to the height/radius ratio.4.2.1 Height/Radius RatioConsider the struture D2;38 as an example. The struture is indivisible, and the relationshipbetween the minimum eigenvalues of ~A� and the height/radius ratio is plotted in Figure. 4.The minimum eigenvalues of the ~AA2 and ~AE1 bloks are always equal to zero beause theyorresponds to the rigid-body motions. ~AA1 and ~AE2 are always positive de�nite, while thepositive de�niteness of ~AE3 varies depending on the height/radius ratio.
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Fig. 4: The inuene of the height/radius ratio on the prestress stability of the struture D2;38 .The struture is prestress stable when the ratio is in the range [0:4; 3:1℄
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Fig. 5: The inuene of the height/radius ratio on the prestress stability of the struture D2;18 .The struture is never prestress stable.We an see that the struture is prestress stable only when the height/radius ratio falls into theregion [0:4; 3:1℄, whih is shown as a shaded area in the �gure.4.2.2 ConnetivityA struture is super stable only if h = 1 [1℄. Thus it is lear that stability depends on theonnetivity of horizontal ables. It has been illustrated above that in some speial ases with theright height/radius ratio, the struture an still be prestress stable, even though it is not superstable. However, this is also dependent upon the onnetivity of vertial ables.For example, onsider the struture D2;18 in Figure. 5, with the same onnetivity of horizontalables asD2;38 , but di�erent onnetivity of vertial ables. Unlike the strutureD2;38 , the strutureD2;18 an never be prestress stable beause the minimum eigenvalue of ~AE3 is always negative.4.2.3 Materials and Self-stressesThis setion will show the e�et on the stability of the strutures of having non-in�nite sti�nessfor the ables and struts. We will make the simpli�ation that all of the struts and ables havethe same axial sti�ness. The key parameter is then the ratio of the axial sti�ness to the prestressin the struture.
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Fig. 6: The inuene of the height/radius ratio and the sti�ness/prestress ratio k on the stabilityof the struture D3;27 .Consider that the ables and struts have axial sti�ness AE=l, and that the vertial ables arrya fore density, due to the prestress, of qv. We will onsider the sti�ness of an example struturefor di�erent values of k = AE=lqv, where k is dimensionless. If the struture is linear-elasti, thestrain due to a partiular prestress will be 1=k.Figure 6 shows the smallest eigenvalues of the tangent sti�ness matrix for the struture D3;27 .Results are plotted for k = 1; 10; 100; 1000, and for the in�nite sti�ness ase, where e�etivelyk !1. As k redues, the struture beomes less stable, and eventually loses stability altogether.5. CATALOGUEBased on the methods desribed in this paper, we present in Table 2 a omplete atalogue ofprismati tensegrity strutures with dihedral symmetry for n � 10.6. DISCUSSION AND CONCLUSIONA simple method for determining the self-equilibrated on�guration of prismati tensegrity stru-tures with dihedral symmetry has been presented.The onditions for the divisibility of prismati tensegrity strutures have been presented, based onthe onnetivity of horizontal and vertial ables. Divisible strutures an be physially separatedinto several idential substrutures.Stability of prismati tensegrity strutures is demonstrated to be related to the onnetivity of thehorizontal and vertial ables, and is also sensitive to the height/radius ratio of the struture. Itis also shown that stability of a tensegrity struture that is not super stable is also inuened bythe seletion of materials and the level of prestress.A omplete atalogue of the prismati tensegrity strutures with relative small number of membershas been given.The methods desribed in this paper have been implemented interatively, and an be aessedwith the JAVA program online:http://tensegrity.AIStruture.om/prismati/Aknowledgement:The invaluable disussions with Prof. Bob Connelly of Cornell University are greatly appreiated.



Table 2: The stability of prismati tensegrity strutures Dh;vn . 's' denotes super stable, 'u' denotesunstable, and 'p' indiates that the struture is not super stable but is always prestress stable witharbitrary height/radius ratio. If the struture an be divided, its substrutures are given; and ifthe struture is prestress stable only in a spei� region of height/radius ratio from h1 to h2, thenthis region is presented by [h1; h2℄.vn = 3 1h 1 s vn = 4 1 2h 1 s u2 s 2D1;12 vn = 5 1 2h 1 s u2 s uvn = 6 1 2 31 s u uh 2 s 2D1;13 u3 s p 3D1;12 vn = 7 1 2 31 s u uh 2 s u [0.75,1.05℄3 s u uvn = 6 1 2 3 41 s u u uh 2 s 2D1;14 u 2D2;143 s [0.40,3.10℄ u u4 s 2D1;24 [0.35,2.35℄ 4D1;12
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