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ient method to determine the self-equilibrated 
on�gurationsof prismati
 tensegrity stru
tures with dihedral symmetry. It is demonstrated that stability ofprismati
 tensegrity stru
tures is not only determined by the 
onne
tivity manner of the members,but also sensitive to the height/radius ratio and the sti�nss/prestress ratio. A 
atalogue of sym-metri
 prismati
 tensegrity stru
tures with relatively small number of members is presented basedon the stability investigations.1. INTRODUCTIONIn this paper, we des
ribe a study into the 
on�guration and stability of prismati
 tensegritystru
tures with dihedral symmetry. The simplest example of this 
lass of stru
tures is shown inFigure. 1. This 
lass of stru
tures was studied by Connelly and Terrell [1℄: they showed that theexample shown in Figure. 1, and other prismati
 tensegrity stru
tures where the horizontal 
ablesare 
onne
ted to adja
ent nodes, are guaranteed to be stable, regardless of the levels of prestressand material properties. These stru
tures are 
alled super stable. However, the stability of otherstru
tures in this 
lass was not addressed, and is the subje
t of this paper.We show that, in general, the stability of prismati
 tensegrity stru
tures depends not only on the
onne
tivity of the members, but also on their geometry (height/radius ratio), and also on thelevel of prestress and the sti�ness of struts and 
ables.2. SYMMETRY AND CONFIGURATIONWe are 
onsidering stru
tures that have dihedral symmetry, denoted Dn: there is a single major n-fold rotation axis, whi
h we assume is the verti
al, z-axis, and n 2-fold rotation axes perpendi
ularto this. The stru
tures 
onsist of 2n nodes, arranged in two horizontal planes, with n nodes inea
h. We number the nodes from 0 to n� 1 in the top plane, and n to 2n� 1 in the bottom plane.Ea
h node of the stru
ture is 
onne
ted by two horizontal 
ables within its own horizontal plane,and is 
onne
ted by one `verti
al' 
able and one strut to nodes in the other plane. An example
horizontal

vertical
strutvertical

horizontalFig. 1: The simplest prismati
 tensegrity stru
ture. The thi
k and thin lines denote, respe
tively,
ables that 
an only 
arry tension, and struts that 
arry 
ompression. There are two horizontalplanes, whi
h have here been 
oloured grey to aid per
eption. This stru
ture has D3 symmetry,and is denoted D1;13 :
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onne
ted to node 0, N0, of an example tensegrity stru
ture with D8 symmetry.The horizontal 
ables are 
onne
ted to nodes 2 and n�2 = 6, the strut is 
onne
ted to node n = 8,and the `verti
al' 
able is 
onne
ted to node n+ 1 = 9. This stru
ture is denoted D2;18 .showing the 
ables and struts 
onne
ted to node 0, N0, is shown in Figure. 2. Node N0 is 
onne
tedby a strut to node Nn, by horizontal 
ables to nodes Nh and Nn�h (we assume that h � n=2) andby a verti
al 
able to node Nn+v, where h and v are parameters that de�ne the stru
ture. Wedenote the stru
ture de�ned by n, h and v as Dh;vn .Ea
h node is transformed into exa
tly one other node by one of the symmetry operations inthe group (the nodes form a regular orbit). Ea
h symmetry operation 
an be represented by atransformation matrixRi, where the operation transforms nodeN0 to nodeNi. Let the 
oordinatesof nodes N0 and Ni be denoted by x0 and xi (2 <3) in three-dimensional spa
e, respe
tively. Theyare related by Ri 2 <3�3 as xi = Rix0 (1)where i runs from 0 to 2n � 1. The matri
es Ri are given in Table 1. In group representationtheory, the mapping from the symmetry operations to these matri
es is said to form a redu
iblerepresentation for the group [2℄.To �nd a totally symmetri
 state of self-stress in the stru
ture, we only have to 
onsider equilibriumof one node | every other node is symmetri
ally equivalent [3℄. We will 
onsider node N0. Letqh, qs and qv denote the for
e densities | axial for
e fi to length li ratio; i.e., qi = fi=li, of thehorizontal 
ables, strut and verti
al 
able, respe
tively.The two nodes 
onne
ting to N0 as horizontal 
ables must be 
hosen as a pair; i.e., if Nh issele
ted to 
onne
t with N0, then symmetry requires that node Nn�h should also be 
hosen. The
oordinates xh and xn�h 
an be 
omputed as followsxh = Rhx0; xn�h = Rn�hx0 (2)and the axial for
e ve
tors fh and fn�h of horizontal 
ables 
an be written asfh = fh(xh � x0)=lh = qh(Rh � I3)x0fn�h = fh(xn�h � x0)=lh = qh(Rn�h � I3)x0 (3)Table 1: Transformation matri
es of the dihedral group Dn. Note that ea
h matrix has a blo
k-diagonal form, where the non-zero entries o

ur in a 2� 2 blo
k in the top-left and a 1� 1 blo
kin the bottom right. The mapping from the operations to these submatri
es forms an irredu
iblerepresentation of the group [2℄. We use the notation Ci = 
os(2i�=n) and Si = sin(2i�=n).0 � i � n� 1 n � i � 2n� 1Ri 24Ci �Si 0Si Ci 00 0 135 24Ci Si 0Si �Ci 00 0 �135



where I3 denotes the 3-by-3 identity matrix.Unlike the horizontal 
ables, there is only one node Nn+j in the lower plane 
onne
ted to N0 as astrut or verti
al 
able | the inverse of Rn+j (0 � j < n) is identi
al to itself; i.e., R�1n+j = Rn+j .The axial for
e ve
tors fs and fv of the strut and verti
al 
able arefs = qs(Rn+s � I3)x0; fv = qv(Rn+v � I3)x0 (4)We are interested in the 
ase when the stru
ture is in equilibrium without external loads. Thus,the node N0 should be in a state of self-equilibrium:fh + fn�h + 2fs + 2fv = 0 (5)Substituting from (3), (4) and Table 1 givesAx0 = 0 (6)whereA = 2qh 24Ch 0 00 Ch 00 0 135+ 2qs 241 0 00 1 00 0 �135 + 2qv 24Cv Sv 0Sv Cv 00 0 �135 � 2(qh + qs + qv)241 0 00 1 00 0 135 (7)Noti
e that A has a blo
k-diagonal form, where the non-zero entries o

ur in a 2� 2 blo
k in thetop-left and a 1� 1 blo
k in the bottom rightIn order for (6) to give a solution for x0 that does not lie either in the xy-plane, or along the z-axis,then both the submatri
es in A must be singular, and this gives the two following 
onditionsqv = �qsqhqv = �p2� 2Cv1� Ch (8)Sin
e both of qh and qv should be positive for the 
ables, only the positive solution is adopted.The general solution x0 of (6), the null-spa
e of A, is then given byx0 = rr0 24Cv � 1 +p2� 2CvSv0 35+H=22400135 (9)where r0 is the norm of the �rst ve
tor representing the 
oordinates in xy-plane, and r and H arethe radius and height of the stru
ture, whi
h 
an have arbitrary real values.By the appli
ation of (1), then 
oordinates of all the nodes Ni of the stru
ture 
an be determinedby running i from 0 to 2n� 1.3. DIVISIBILITY CONDITIONSDepending on the 
onne
tivity of members, a prismati
 tensegrity stru
ture may be 
ompletelyseparated into several identi
al substru
tures that have no me
hani
al relation with ea
h other.For example, the stru
ture D2;26 in Figure. 3 
an be divided into two identi
al substru
tures D1;13 .We will ex
lude divisible stru
tures from our stability investigation: the dis
onne
ted substru
tureshave nothing to prevent relative motion. The substru
tures themselves 
an be 
onsidered asindividual stru
tures with lower symmetry.This se
tion presents the ne
essary and suÆ
ient 
onditions for the divisibility of prismati
 tenseg-rity stru
tures.
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ture D2;26 and its two substru
tures D1;13 .3.1 Divisibility of Horizontal CablesSuppose that we randomly sele
t one node as the starting node, and travel to the next along thehorizontal 
ables. If we repeat this in a 
onsistent dire
tion, eventually, we must 
ome ba
k tothe starting node. The nodes and horizontal 
ables that have been visited in the trip are said tobelong to the same 
ir
uit. If there are more than one 
ir
uit in the plane, the horizontal 
ablesare said to be divisible; otherwise, they are indivisible.Denote the number of 
ir
uits of the horizontal 
ables in one plane by n
, and the number of nodesin ea
h 
ir
uit by ns. Ea
h time we travel along a 
able of one 
ir
uit, we pass by h nodes, andhen
e by the time we return to the original node, we have passed hns nodes. Suppose that in this
ir
uit, we have travelled around the plane hs times, and have hen
e passed by nhs nodes. Thus,nsh = hsn: (10)The number of 
ir
uits ns in ea
h horizontal plane is given byn
 = nns = hhs : (11)The ne
essary and suÆ
ient 
ondition for the divisibility of horizontal 
ables in the same plane isthat there is more than one 
ir
uit of nodes, n
 6= 1, and hen
e.h 6= hs (12)Valuable information about possible substru
tures 
an be found:� The 
onne
tivity of the horizontal 
ables is hs.� The number of nodes in ea
h plane is ns.� There are n
 substru
tures.Note that (12) is only the divisibility 
ondition for the horizontal 
ables, but not for the wholestru
ture. Divisibility of verti
al 
ables should also be taken into 
onsideration.3.2 Divisibility of Verti
al CablesIf the horizontal nodes are divisible, then the nodes in the 
ir
uits of horizontal 
ables 
ontainingN0 and Nn are Cir
uit 1: N0; Nh; N2h; : : : ; N(ns�1)hCir
uit 2: Nn; Nn+h; : : : ; Nn+(ns�1)h (13)



Cir
uit 1 and Cir
uit 2 are 
onne
ted by struts. If they are also 
onne
ted by 
ables, then thesubstru
ture 
onstru
ted from these nodes 
an be 
ompletely separated from the original stru
ture.Thus the stru
ture will be divisible if the following holds, where vs is an integer:v = vsh (14)In summary, (12) and (14) are the ne
essary and suÆ
ient 
onditions for a divisible stru
ture. Theoriginal stru
ture Dh;vn 
an be divided into n
 identi
al substru
tures Dhs;vsns .4. STABILITYIn this se
tion, the 
riti
al fa
tors for the stability of prismati
 tensegrity stru
tures are investi-gated: height/radius ratio, 
onne
tivity, and sti�ness/prestress ratio. We will use the symmetry-adapted 
oordinate systems to simplify our 
al
ulations, and present the results [4, 5℄.4.1 Prestress StabilityIf we assume that the axial sti�ness of struts and 
ables is in�nite, then to �rst order, the only waythat the stru
ture 
an deform is along the path of in�nitesimal me
hanisms. Then we 
an de�neprestress stability as follows:If the quadrati
 form of the geometri
al sti�ness matrix with respe
t to the me
hanisms is positivede�nite, then the stru
ture is said to be prestress stable. [6℄This 
riterion is very 
onvenient for the initial investigation of the stability of our stru
tures,be
ause the sele
tion of materials does not need to be 
onsidered.We will 
onsider the 
al
ulation in a symmetry-adapted form, where we 
an separately 
onsider theproperties of the stru
ture in di�erent symmetry subspa
es. Ea
h symmetry subspa
e 
orrespondsto one of the irredu
ible representations of the group. For the dihedral symmetry group Dn,the irredu
ible representations are, for n even, A1; A2; B1; B2; E1; � � � ; En=2�1, and for n odd,A1; A2; E1; � � � ; E(n�1)=2.Let � denote an irredu
ible representation of the symmetry group of the stru
ture. The blo
ks ofthe symmetry-adapted geometri
al sti�ness matrix ~KG and equilibrium matrix ~D 
orresponding to� are denoted by ~K�G and ~D�, respe
tively. The symmetry-adapted me
hanisms lying in the null-spa
e of the transpose of ~D� are written as 
olumns of ~M�. Then, the blo
k ~A� 
orrespondingto the representation � of the symmetry-adapted quadrati
 form ~A of the geometri
al sti�nessmatrix with respe
t to the me
hanisms is~A� = ( ~M�)> ~K�G ~M� (15)The stru
ture is prestress stable if and only if ~A� are all positive de�nite for all representations �ex
ept for A2 and E1, whi
h 
orresponds to the rigid-body motions; and the positive de�nitenessof ~A� 
an be easily veri�ed be
ause it is a matrix with dimensions of only one or two.4.2 Criti
al Fa
torsHere, we show that the prestress stability of a prismati
 tensegrity stru
ture is not only in
uen
edby the 
onne
tivity of horizontal 
ables but also that of the verti
al 
ables, and furthermore, issensitive to the height/radius ratio.4.2.1 Height/Radius RatioConsider the stru
ture D2;38 as an example. The stru
ture is indivisible, and the relationshipbetween the minimum eigenvalues of ~A� and the height/radius ratio is plotted in Figure. 4.The minimum eigenvalues of the ~AA2 and ~AE1 blo
ks are always equal to zero be
ause they
orresponds to the rigid-body motions. ~AA1 and ~AE2 are always positive de�nite, while thepositive de�niteness of ~AE3 varies depending on the height/radius ratio.
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Fig. 4: The in
uen
e of the height/radius ratio on the prestress stability of the stru
ture D2;38 .The stru
ture is prestress stable when the ratio is in the range [0:4; 3:1℄
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Fig. 5: The in
uen
e of the height/radius ratio on the prestress stability of the stru
ture D2;18 .The stru
ture is never prestress stable.We 
an see that the stru
ture is prestress stable only when the height/radius ratio falls into theregion [0:4; 3:1℄, whi
h is shown as a shaded area in the �gure.4.2.2 Conne
tivityA stru
ture is super stable only if h = 1 [1℄. Thus it is 
lear that stability depends on the
onne
tivity of horizontal 
ables. It has been illustrated above that in some spe
ial 
ases with theright height/radius ratio, the stru
ture 
an still be prestress stable, even though it is not superstable. However, this is also dependent upon the 
onne
tivity of verti
al 
ables.For example, 
onsider the stru
ture D2;18 in Figure. 5, with the same 
onne
tivity of horizontal
ables asD2;38 , but di�erent 
onne
tivity of verti
al 
ables. Unlike the stru
tureD2;38 , the stru
tureD2;18 
an never be prestress stable be
ause the minimum eigenvalue of ~AE3 is always negative.4.2.3 Materials and Self-stressesThis se
tion will show the e�e
t on the stability of the stru
tures of having non-in�nite sti�nessfor the 
ables and struts. We will make the simpli�
ation that all of the struts and 
ables havethe same axial sti�ness. The key parameter is then the ratio of the axial sti�ness to the prestressin the stru
ture.
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Fig. 6: The in
uen
e of the height/radius ratio and the sti�ness/prestress ratio k on the stabilityof the stru
ture D3;27 .Consider that the 
ables and struts have axial sti�ness AE=l, and that the verti
al 
ables 
arrya for
e density, due to the prestress, of qv. We will 
onsider the sti�ness of an example stru
turefor di�erent values of k = AE=lqv, where k is dimensionless. If the stru
ture is linear-elasti
, thestrain due to a parti
ular prestress will be 1=k.Figure 6 shows the smallest eigenvalues of the tangent sti�ness matrix for the stru
ture D3;27 .Results are plotted for k = 1; 10; 100; 1000, and for the in�nite sti�ness 
ase, where e�e
tivelyk !1. As k redu
es, the stru
ture be
omes less stable, and eventually loses stability altogether.5. CATALOGUEBased on the methods des
ribed in this paper, we present in Table 2 a 
omplete 
atalogue ofprismati
 tensegrity stru
tures with dihedral symmetry for n � 10.6. DISCUSSION AND CONCLUSIONA simple method for determining the self-equilibrated 
on�guration of prismati
 tensegrity stru
-tures with dihedral symmetry has been presented.The 
onditions for the divisibility of prismati
 tensegrity stru
tures have been presented, based onthe 
onne
tivity of horizontal and verti
al 
ables. Divisible stru
tures 
an be physi
ally separatedinto several identi
al substru
tures.Stability of prismati
 tensegrity stru
tures is demonstrated to be related to the 
onne
tivity of thehorizontal and verti
al 
ables, and is also sensitive to the height/radius ratio of the stru
ture. Itis also shown that stability of a tensegrity stru
ture that is not super stable is also in
uen
ed bythe sele
tion of materials and the level of prestress.A 
omplete 
atalogue of the prismati
 tensegrity stru
tures with relative small number of membershas been given.The methods des
ribed in this paper have been implemented intera
tively, and 
an be a

essedwith the JAVA program online:http://tensegrity.AIStru
ture.
om/prismati
/A
knowledgement:The invaluable dis
ussions with Prof. Bob Connelly of Cornell University are greatly appre
iated.



Table 2: The stability of prismati
 tensegrity stru
tures Dh;vn . 's' denotes super stable, 'u' denotesunstable, and 'p' indi
ates that the stru
ture is not super stable but is always prestress stable witharbitrary height/radius ratio. If the stru
ture 
an be divided, its substru
tures are given; and ifthe stru
ture is prestress stable only in a spe
i�
 region of height/radius ratio from h1 to h2, thenthis region is presented by [h1; h2℄.vn = 3 1h 1 s vn = 4 1 2h 1 s u2 s 2D1;12 vn = 5 1 2h 1 s u2 s uvn = 6 1 2 31 s u uh 2 s 2D1;13 u3 s p 3D1;12 vn = 7 1 2 31 s u uh 2 s u [0.75,1.05℄3 s u uvn = 6 1 2 3 41 s u u uh 2 s 2D1;14 u 2D2;143 s [0.40,3.10℄ u u4 s 2D1;24 [0.35,2.35℄ 4D1;12
vn = 6 1 2 3 41 s u u uh 2 s u u u3 s u 3D1;13 u4 s u [0.20,1.60℄ uvn = 6 1 2 3 41 s u u u u2 s 2D1;15 u 2D2;15 uh 3 s [0.70,1.35℄ u [0.75,1.25℄ u4 s 2D1;25 u 2D2;25 u5 s p p p 5D1;12The �rst author is grateful for �nan
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