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Abstract
A mixed integer programming formulation is presented for the truss topology optimization with stress and
local constraints. Linear programming problems are successively solved based on a branch-and-bound
method, where an upper-bound solution is obtained by solving nonlinear programming problems. It is
shown in the examples that upper- and lower-bound solutions with small objective gap can be found,
and the computational cost can be reduced by utilizing the local constraints.

1 Introduction
One of the main difficulties in topology optimization under stress constraints is that the constraints need
not be satisfied by removed members (Sved and Ginos [4]). As a result, the optimal solution is often
located at a cusp or a ridge of the feasible region. To overcome the difficulty due to discontinuities in
the problem, several branch-and-bound-type methods have been presented (Ringertz [3]). A relaxation
method has been presented by Cheng [1] for obtaining a good approximate solution. Another difficulty
in topology optimization is that the solution often turns out to be an unrealistic design due to existence
of unstable nodes, intersection of members, and existence of extremely slender members.

In this study, the topology optimization problem is first formulated as a Mixed Integer Programming
(MIP) problem (Ohsaki and Katoh [2]). The local constraints on nodal instability and intersection of
members are considered. The integer variables for indicating existence of nodes and members are used.
A relaxed Linear Programming (LP) problem is solved to obtain a lower-bound solution. A NonLinear
Programming (NLP) problem with fixed topology satisfying the local constraints is solved to find an
upper-bound solution. It is shown in the examples that upper- and lower-bound solutions with small gap
in objective value can be found by using the proposed branch-and-bound method.

2 Topology optimization problem.
2.1 Governing equations
Consider an elastic truss subjected to multiple static loads Pk (k = 1, 2, . . . , f). The equilibrium equation
between Pk and the vector of axial forces Nk = {Nk

i } is given in the following form:

BNk = Pk, (k = 1, 2, . . . , f) (1)
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The stress σk
i of the ith member and Nk

i are obtained from the nodal displacements Uk as

σk
i =

E

Li
B�

i Uk, Nk
i = Aiσ

k
i , (i = 1, 2, . . . , m; k = 1, 2, . . . , f) (2)

where Ai and Li are the cross-sectional area and the length of the ith member, respectively, E is the
elastic modulus, Bi is the ith column of B, m is the number of members.

2.2 Problem formulation
Let yi ∈ {0, 1} denote a variable indicating by yi = 1 and yi = 0, respectively, the existence and non-
existence of the ith member in the initial ground structure. Stress constraints should be assigned only
for members with yi = 1. To avoid an unstable solution, the following constraints are assigned

AL
i yi ≤ Ai ≤ AU

i yi, (i = 1, 2, · · · , m) (3)

where AU
i and AL

i are the upper bound and moderately large lower bound, respectively, for Ai. Note
from (3) that Ai = 0 should be satisfied if yi = 0.

Let xr ∈ {0, 1} be the variable indicating non-existence and possible existence of the rth node,
respectively, by xr = 0 and xr = 1. The upper and lower bounds for the number of members connected
to the rth node, if exists, are denoted by CU

r and CL
r , respectively. The set of indices of members

connected to the rth node in the ground structure is denoted by Jr, and the constraints are given as

xrC
L
r ≤

∑

i∈Jr

yi ≤ xrC
U
r , (r = 1, 2, . . . , s) (4)

where s is the number of nodes including the supports. Note from (4) that yi = 0 should be satisfied by all
the members connected to a removed node with xr = 0. xr = 1 indicates existence of the rth node. The
following constraints are to be satisfied for the pairs of mutually intersecting members Si (i = 1, . . . , q).

∑

j∈Si

yj ≤ 1, (i = 1, 2, . . . , q) (5)

Consider a problem of minimizing the total structural volume V (A). The upper and lower bounds
for σk

i are denoted by σU
i and σL

i , respectively. The topology optimization problem is then formulated as
a mixed integer programming problem as

MIP : minimize
A,y,x,Uk,σk,Nk

V (A) =
m∑

i=1

AiLi (6)

subject to σL
i yi ≤ σk

i yi ≤ σU
i yi, (7)

yi ∈ {0, 1}, (i = 1, 2, · · · , m) (8)
xr ∈ {0, 1}, (r = 1, 2, · · · , s) (9)
and (1), (2), (3), (4), (5)

2.3 Lower- and upper-bound solutions
A relaxed problem of MIP is to be formulated as an LP to find the lower bound of the objective value
V MIP of MIP. The constraint (7) is rewritten by using variables Nk

i as

Aiσ
L
i ≤ Nk

i ≤ Aiσ
U
i (i = 1, 2, · · · , m; k = 1, 2, · · · , f) (10)

Note that (10) is satisfied for 0 ≤ yi ≤ 1 if (7) is satisfied. Hence, the relaxed LP of MIP is formulated as

LP : minimize
A,y,x,Nk

V (A)

subject to (1), (3), (4), (5), (10),
0 ≤ yi ≤ 1, (i = 1, 2, · · · , m) (11)
0 ≤ xr ≤ 1, (r = 1, 2, · · · , s) (12)
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Figure 1: A 3 × 2 plane grid.
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Figure 2: Initial LP
solution for the 2× 2
plane grid.

Figure 3: Initial
upper-bound solu-
tion for the 2 × 2
plane grid.

Given a set I of existing members, the following NLPI is defined.

NLPI : minimize
A

V (A) =
∑

i∈I
AiLi (13)

subject to σL
i ≤ σk

i (A) ≤ σU
i , (i ∈ I; k = 1, 2, · · · , f) (14)

AL
i ≤ Ai ≤ AU

i , (i ∈ I) (15)

where σk
i (A) is considered as function of A. If NLPI is feasible, its objective value V NLPI gives an upper

bound of V MIP since the solution of NLPI satisfies all the constraints of MIP. The optimal solution of
MIP is found by a branch-and-bound method, where LP and NLPI are successively solved. Since NLPI
is not convex, is is not guaranteed that the globally optimal solution is always found.

3 Examples.
In the following examples, the units of force, length, area, volume and stress are kN, cm, cm2, cm3 and
MPa, respectively. LP and NLP are solved by HOPDM Ver. 2.13 and NLPQL, respectively. Optimization
has been carried out on Xeon 2.8GHz with 1GB memory.

Consider a plane truss grid as shown in Fig. 1. The lengths of the members in x- and y-directions are
200. Irrespective of the numbers of divisions, two loading conditions are considered, where the loads in
the negative y-directions are applied at the node at the lowest end (node 12 in Fig. 1) and the node left
to the lowest end (node 9 in Fig. 1), respectively. The magnitude of each load is 1000. The bounds for
the stress are ±200.0, and CU

r = 6. The value of CL
r is 1 for the supports, 2 for the node at the lowest

end, and 3 for the remaining nodes.
Optimal topology has been first found for the 2×2 grid. The LP solution at the first step is as shown

in Fig. 2, where the width of a member is proportional to its cross-sectional area and V LP = 7.0000×103.
To obtain an initial upper-bound solution, member 1 indicated in Fig. 2 is removed because it has smaller
cross-sectional area in the pair of intersecting members. After removing member 1, the node connected
by members 2 and 3 is removed because it violates the local constraint (4) with CL

r = 3. Hence, members
2 and 3 are removed, and members 4 and 5 are to be removed based on the local constraints. NLPI is
solved by fixing the topology to find an upper bound solution in Fig. 3, where V NLPI = 8.0000 × 103.

The branch-and-bound process is carried out to find the final upper-bound solution as shown in Fig. 4,
where V U = 7.9000 × 103. The optimization results are listed in the first row of Table 1, where No. of
steps means the number of nodes of the branching tree. The final lower-bound solution is shown in Fig. 5,
where V L = 7.8000×103. Since this truss is statically indeterminate, the axial forces obtained by solving
LP are not correct. Hence V L has smaller value than V U that was found by solving NLPI only 5 times.
However, the difference between V L and V U is very small. If we do not consider the local constraints,
the numbers of steps, LP, and NLP are 529, 350, and 58, respectively, and CPU time is 5.05.
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Table 1: Optimization results.

No. of m n AL
i AU

i No. of No. of No. of Upper Lower CPU
division steps LP NLP bound V U bound V L time (s)
2 × 2 20 14 200 800 121 64 5 7.9000 × 103 7.8000 × 103 2.02
3 × 2 29 20 200 800 942 571 6 1.2900 × 104 1.2800 × 104 18.95
3 × 3 42 28 200 800 5874 3483 23 1.2467 × 104 1.2467 × 104 147.84
4 × 4 72 46 200 800 64890 42831 7 1.7067 × 104 1.7067 × 104 3072.84
4 × 4 72 46 200 600 68656 42707 73 1.8373 × 104 1.7916 × 104 2513.06
4 × 4 72 46 400 800 41001 26580 3 2.1507 × 104 2.1507 × 104 1794.08

Figure 4: Final
upper-bound solu-
tion for the 2 × 2
plane grid.

Figure 5: Final
lower-bound solution
for the 2 × 2 plane
grid.

Figure 6: Final upper-bound solution for the 4× 4
plane grid.

The optimization results for 3× 2, 3× 3 and 4× 4 grids are also shown in Table 1, where the number
of NLP steps is independent of the problem size, because it depends on the quality of the initial upper-
bound solution. The final upper-bound solutions for 4 × 4 is shown Fig. 6. Note that V L = V U is
satisfied for 4 × 4, because the lower-bound solution is statically determinate. If AU

i is decreased to 600,
the optimization results are as shown in the fifth row of Table 1. The number of NLP steps is increased
to 73. However, it is difficult to suggest a relation between the computational cost and the constraints
or the size of the feasible region, because the CPU time for AL

i = 400 is almost half of that for AL
i = 200

as shown in the last row of Table 1.

4 Conclusions
A branch-and-bound method has been presented for obtaining upper- and lower-bound solutions of op-
timal topology of trusses under stress constraints. A rigorous problem formulation is first defined as a
MIP problem with 0-1 variables indicating existence of nodes and members. The constraints on member
intersection and nodal instability, which are called local constraints, are also considered. A moderately
large lower bound is given for the cross-sectional area of an existing member. It has been shown that
good upper and lower bounds can be found by using the proposed method. Computational cost can be
drastically reduced by introducing local constraints to obtain practically acceptable optimal topologies.
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