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Abstract

A mathematical programming problem is proposed for form-finding of cable domes.
The optimality conditions of the problem are derived to guarantee that the optimal
solution coincides with the self-equilibrium configuration of the cable dome with speci-
fied member axial forces. The number of independent axial forces is investigated under
the geometrical constraints as well as equilibrium conditions. An algorithm for de-
signing cable domes is presented by using the primal-dual interior-point method. The
self-equilibrium configurations are computed to demonstrate efficiency of the proposed
algorithm.

Introduction

Cable domes belong to a class of truss structures that cannot attain a stable
equilibrium configuration without introducing prestresses to some members (Pel-
legrino, 1992). Tensegrities (Vilney, 1991; Murakami, 2001; Sultan et al., 2001)
and cable networks (Levy and Spillers, 1998) are included in the class of cable
domes as special cases. In this paper, a nonlinear programming approach is pro-
posed for initial form-finding of cable domes.

For form-finding problem of cable domes, Kawaguchi et al. (1999) proposed
a least-square problem of nodal displacements with the specified external forces.
Yuan and Dong (2002) presented a minimization problem of initial tention forces
under stress constraints. As a pioneering work of form-finding, so-called force-
density method was proposed by Schek (1974), which obtains the coordinates of
internal nodes of the cable network with specified force-density of each member;
i.e., the ratio of axial force to member length at the equilibrium state. However,
from the practical point of view, it is strongly recommended to specify the axial
forces directly, which has motivated the subsequent studies such as the smoothing
method (Levy and Spillers, 1998).

We specify the member axial forces at the equilibrium state as well as the
topology of the cable dome; i.e., the connectivity of cables and struts, and obtain
the equilibrium configuration and initial length of each member. To this end, we
propose a nonlinear programming (NLP) problem such that the optimal solution
coincides with the equilibrium configuration with the specified axial forces.

For cable networks, which can be regarded as special cable domes without
struts, the proposed optimization problem can be shown to be reduced to second-
order cone programming (SOCP) problem (Ben-Tal and Nemirovski, 2001). SOCP



is known as a special class of convex optimization problems, which is efficiently
solvable by using the polynomial-time interior-point algorithms. The problem
proposed for cable domes is nonconvex. However, it can be regarded as a natural
extension of SOCP.

The set of member axial forces cannot be specified arbitrarily because (i) the
axial forces should satisfy the equilibrium equations, and a set of axial forces is
not necessarily realized by any configurations; (ii) the configurations of most cable
domes actually built have some symmetry properties. In order to design the sym-
metric cable domes, we can conject that the same axial forces should be assigned
to the symmetrically located members. These motivate us to investigate how to
find an admissible set of axial forces. From equilibrium conditions with geometri-
cal nonlinearity and the symmetry conditions based on the group representation
theory (Ikeda and Murota, 2002), we derive a necessary and sufficient condition
for the maximal subset of axial forces which can be specified arbitrarily.

Form-finding problem of cable domes

Consider a cable dome in three dimensional space. Let nm denote the number
of members including both cables and struts. Assume that each cable and strut
member can transmit only tension and compression forces, respectively. The
subsets IC and IS of {1, . . . , nm}, respectively, are defined as the sets of all indices
of cables and struts.

Let nd denote the number of freedom of displacements. Consider the equilib-
rium state that was attained after introducing prestresses to some cables with-
out external forces. Our objective is to obtain the coordinates of internal nodes
x ∈ �nd

and the initial unstressed length l0i of each member which satisfies the
equilibrium conditions with the specified axial forces q∗i (i = 1, . . . , nm). As the
first step, we specify the cross-sectional area Āi and the strain ε̄i of the ith mem-
ber, where

ε̄i =

{
ε̄ (i ∈ IC),

−ε̄ (i ∈ IS),
(1)

for a given ε̄ > 0, and formulate the form-finding problem as an NLP problem.
The standard Euclidean norm of vector p ∈ �n is defined as ‖p‖ = (p�p)1/2.

The member length li at the equilibrium state can be written as

li = ‖Bix − di‖ (i = 1, . . . , nm), (2)

where Bi ∈ �3×nd
is a constant matrix determined only by the connectivity of

nodes, and each of its elements is equal to either {−1, 0, 1}. di ∈ �3 is a constant
vector that consists of the specified nodal coordinates of a support if the ith
member is connected to the support, otherwise di = 0.

For simplicity, we assume a linear elastic material, where the Young’s modulus
is denoted by E. Consider the following problem:

(D(ε̄)) : min
∑
i∈IC

1

2
EĀiε̄

2l0i −
∑
i∈IS

1

2
EĀiε̄

2l0i

s.t. (1 + ε̄)l0i ≥ ‖Bix − di‖ (i ∈ IC),
(1 − ε̄)l0i ≤ ‖Bix − di‖ (i ∈ IS),



where l0 = (l0i ) ∈ �nm
and x ∈ �nd

are variables. Notice here that the objective
function and the constraints of (D) correspond to the difference of the total strain
energy of cables and struts, and the relaxed compatibility conditions, respectively.

Lemma 1. Suppose l̃0i > 0 (i = 1, . . . , nm). (l̃0, x̃) ∈ �nm ×�nd
is a local optimal

solution of (D) only if there exists a q̃ = (q̃i) ∈ �nm
satisfying

q̃i = EĀiε̄i (i = 1, . . . , nm), (3)

nm∑
i=1

B�
i q̃i

Bix̃ − di

‖Bix̃ − di‖
= 0, (4)

(1 + ε̄i)l̃
0
i = ‖Bix̃ − di‖ (i = 1, . . . , nm). (5)

Proof. Since (D) is a minimization problem and the objective function is an mono-
tonic function of l0i , we see that all the constraints are active at any local optimal
solution; i.e., the condition (5) is satisfied. From this and the Karush–Kuhn–
Tucker conditions of (D), Lemma 1 is immediately obtained.

The following lemma guarantees that the (local) optimal solution of (D) sat-
isfies the equilibrium conditions. This lemma plays a key role in the subsequent
formulations.

Lemma 2. Let (l̃0, x̃) denote a local optimal solution of (D). C(l̃0) denotes the

cable dome where the initial unstressed length of each member is specified as l̃0i
(i = 1, . . . , nm). Then, ε̄i and x̃ coincide with the member strain and the vector

of coordinates of internal nodes of C(l̃0), respectively, at the equilibrium state.

Proof. Let l̃0 be constant. Consider the following problem:

(A(l̃0)) : min
∑

i∈IC∪IS

1

2
EĀiε

2
i l̃

0
i

s.t. (1 + εi)l̃0i = ‖Bix − di‖ (i ∈ IC ∪ IS),

where ε = (εi) ∈ �nm
and x ∈ �nd

are variables; i.e., (A(l̃0)) is the minimization

problem of the total potential energy for C(l̃0). Suppose ε̂i �= −1 (i = 1, . . . , nm).

(ε̂, x̂) ∈ �nm × �nd
is a local optimal solution of (A(l̃0)) only if there exists a

q̂ = (q̂i) ∈ �nm
satisfying

q̂i = EĀiε̂i (i = 1, . . . , nm) (6)
nm∑
i=1

Biq̂i
Bix̂ − di

‖Bix̂ − di‖
= 0, (7)

(1 + ε̂i)l̃0i = ‖Bix̂ − di‖ (i = 1, . . . , nm). (8)

From the stationary principle of the total potential energy, ε̂i, q̂i and x̂ satisfying
(6)–(8) correspond to the strain and the axial force of each member, and the vector

of internal nodes, respectively, at the equilibrium state of C(l̃0). By putting q̃ = q̂
and x̃ = x̂, we can see that Lemma 2 follows the fact such that (6)–(8) are
equivalent to (3)–(5), which concludes the proof.



On cable networks

Cable networks are included in the class of cable domes as the special case IS = ∅.
In this section, we investigate (D) and (A) for cable networks. Let vi ∈ �3 and
v = (v1, . . . , vnm) ∈ �3nm

.

Lemma 3. Suppose IS = ∅. (l̃0, x̃) ∈ �nm × �nd
is a global optimal solution of

(D) if and only if there exists a (q̃, ṽ) ∈ �nm × �3nm
satisfying

q̃i = EĀiε̄i, q̃i ≥ ‖ṽi‖ (i = 1, . . . , nm), (9)
nm∑
i=1

B�
i ṽi = 0, (10)

(1 + ε̄)l̃0i ≥ ‖Bix̃ − di‖ (i = 1, . . . , nm), (11)

Proof. This lemma follows the KKT conditions for the nondifferentiable convex
optimization problem (Rockafellar, 1970, Theorem 31.3) and the self-duality of
the second-order cone (Ben-Tal and Nemirovski, 2001).

Notice here that Lemma 3 states the necessary and sufficient conditions for
global optimality, whereas Lemma 1 states the necessary conditions for local op-
timality. Moreover, we see that (D) for IS = ∅ is an SOCP problem (Ben-Tal and
Nemirovski, 2001), which is a special class of convex optimization problems. The
authors showed that the equilibrium shapes and member initial lengths of cable
networks can be obtained by solving that SOCP problem by using the primal-dual
interior-point method (Kanno and Ohsaki, 2002).

We also showed that, for IS = ∅, (A) can be reformulated into the following
convex problem:

(AC(l̃0)) : min
∑
i∈IC

1

2
EĀiε

2
i l̃

0
i

s.t. (1 + εi)l̃
0
i ≥ ‖Bix − di‖ (i ∈ IC),

which is also embedded into an SOCP problem. See, Kanno et al. (2002) for more
details.

Maximal set of independent axial forces

In (D), we cannot specify all Āis arbitrary. Let β denote the maximal number of
independent Āi, or q∗i . Note that the most of cable domes actually built have some
symmetry properties, e.g., as shown in Fig.1. Hence, we have β < nm because
(i) the axial forces should satisfy the equilibrium equations, and a set of axial
forces is not necessarily realized by arbitrary configurations; (ii) in accordance
with the symmetry of configuration, the distribution of axial forces should also
have some symmetry property.

Letting vi ∈ �3 denote the internal force vector of the ith member, we have
qi = EAiε̄ = ‖vi‖. The equilibrium equations are written as

nm∑
i=1

B�
i vi = 0, (12)
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Figure 1: Cable dome.

which are valid under finite deformation. We write B = [B�
1 , . . . , B�

nm ]� ∈
�3nm×nd

for simplicity. Then (12) is written as B�v = 0. Under assumptions
such that the cable dome is simply connected, we can show rank B = nd (Kanno
and Ohsaki, 2003). Hence, we have β = 3nm − nd if the constraints on symmetry
of configuration is not included.

Suppose that we make the constraint such that the configuration of the cable
dome should have some symmetry. For each i = 1, . . . , nm, define h̃i ∈ �3 and
l̃i ∈ � by

h̃i = Bix̃ − di, l̃i = ‖h̃i‖, (13)

where h̃i and l̃i = (1 + ε̄)l̃0i correspond to the deformation vector and the length
of the ith member at the optimal solution of (D). The invariance condition of
configuration; i.e., the symmetry property of configuration, can be written as

C�h̃ = 0, (14)

where C ∈ �3nm×3ng
is an appropriate constant matrix and h̃ = (h̃1, . . . , h̃nm) ∈

�3nm
. Letting G denote the finite group which labels the symmetry of h, ng is the

positive integer determined from the number of all inequivalent irreducible unitary
representations of G (See, e.g, Ikeda and Murota (2002) for the basic buckground
of the group representation theory). It follows from the second equation in (13)
that (14) can be rewritten as

C�
A l̃ = 0, (15)

where CA ∈ �nm×ng
is constant, and l̃ = (l̃i) ∈ �nm

. The distribution of member
cross-sectional areas should also have the symmetry property, which is written by
using the same matrix CA in (15) as

C�
AĀ = 0, (16)

where Ā = (Āi) ∈ �nm
. Recall that we specify the strains ε̄i as (1), and vi =

EĀiε̄ihi/‖hi‖. By using the symmetry of Ā, (14) is reduced to

C�ṽ = 0. (17)



Accordingly, v should satisfy the system of (12) and (17), from which it follows
that

β = 3nm − rank(B, C)� (18)

There exists a set of independent rank(B, C)� column vectors in the matrix

(B̃, C̃)�, and we can choose β column vectors that do not belong to that set.
Hence, we have β members corresponding to the selected column vectors, and Āi

or q∗i can be specified arbitrary for these members.
Suppose that we specify the axial force q∗i and the cross-sectional area A∗

i of
each member. Then, the strain ε∗i at the equilibrium state should satisfy

q∗i = EA∗
i ε

∗
i (i = 1, . . . , nm),

which implies that specifying A∗
i and q∗i is equivalent to specifying A∗

i and ε∗i .
Moreover, we can always choose Āi > 0 and ε̄ > 0 such that

A∗
i |ε∗i | = Āiε̄ (i = 1, . . . , nm). (19)

Accordingly, the equilibrium configuration x of the cable dome with the specified
axial forces q∗ can be obtained by using the following algorithm:

Algorithm 4.

Step 1: Set the topology Bi, IC and IS, the coordinates of supports di, and
the symmetry property CA and C.

Step 2: Compute β from (18).

Step 3: Specify q∗i ; i.e., the pairs of A∗
i and ε∗i of β members.

Step 4: For the given ε̄ > 0, compute Āi of β members from (19).

Step 5: Compute Āi of the remaining nm −β members from (16) and the equi-
librium equations.

Step 6: Compute a solution of (D) by using the interior-point method.

In Step 5 of Algorithm 4, we compute the unknown Āis from (16) after substi-
tuting the Āis of β members obtained in Step 4. Although we prepare the matrix
(B, C)� in Step 2, the unknown Āis can be obtained by solving the small scale
equilibrium equations at a node connected by each member with unknown Āi; i.e.
it is not required to solve the large scale linear equations (B, C)�v = 0 in Step 5.

Examples

Consider the cable dome as shown in Fig.1 that has 16 struts. We specify the
coordinates of supports, whereas the coordinates of internal nodes are unknown.
Let s and r(ϕ), respectively, denote the reflection with respect to the xz-plane
and the counter-clockwise rotation around the z-axis with the angle ϕ. We make
the constraints such that the geometry of this cable dome should be symmetric



Table 1: Specified values of Ā∗
i .

member Ā∗
i (cm2) member Ā∗

i (cm2) member Ā∗
i (cm2)

2 30.0 6 3.0 13 10.0
3 35.0 7 3.5 14 1.0
4 28.0 8 3.5
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Figure 2: Plane element. Figure 3: Equilibrium configura-
tion.

with respect to any transformation by the element of the dihedral group of degree
8 defined as

D8 =
{
r(πk/4), sr(πk/4)

∣∣(k = 1, . . . , 8)
}
.

From the rotational symmetry of the dome, we only have to consider the plane
element as shown in Fig.2, where nm = 16, nd = 16, IC = {1, . . . , 12} and
IS = {13, . . . , 16}. The tension forces of the members 3, 4, 7, and 8 in Fig.1,
which are denoted by qh

i (i = 3, 4, 7, 8), are modeled by those of members 3, 4, 7
and 8 in Fig.2 as

qi = 2qh
i sin

(π

8

)
(i = 3, 4, 7, 8).

Then the symmetry constraints are reduced to those with respect to z-axis on the
model shown in Fig.2, from which we obtain rank(B, C)� = 24. By applying (18)
to the two-dimensional model, we see β = 2nm−rank(B, C)� = 8. It is easily veri-
fied that we can choose the set of 8 members as {2, 3, 4, 6, 7, 8, 13, 14}. Suppose the
cross-sectional areas are assigned as listed in Tab.1. From the equilibrium equa-
tions, Ā1 = 27.1141 and Ā5 = 2.7114 are obtained, whereas Āi (i ∈ {9, . . . , 12})
are immediately obtained from the symmetry conditions.

Letting E = 205.8 GPa and ε̄ = 1.0 × 10−3, the problem (D) has been solved
by using NUOPT (1998), which is an implementation of primal-dual interior-point
method for NLP. The obtained equilibrium configuration is as shown in Fig.3. At
each node, the norm of unbalanced force is within 10−6 of the average norm of
axial forces, which illustrates the accuracy of the proposed method.

Conclusions

We have formulated the form-finding problem of cable domes as an NLP problem
with the specified axial forces, which can be regarded as the minimization problem
of the difference of the total strain energy between cable members and struts



under constraints on compatibility conditions. By investigating the optimality
conditions, it has been guaranteed that the optimal solution of the proposed NLP
problem satisfies the equilibrium conditions. We have also proposed the method to
find a maximal set of independent axial forces explicitly considering the specified
symmetry property of the geometry of the structure.

It has been demonstrated in the numerical example that the set of admissible
axial forces can be found by using the proposed algorithm. Since we can solve the
proposed NLP promlem by the well-developed existing softwares of NLP based
on primal-dual interior-point method, our task is only to input geometrical and
material information of cable domes, and no effort is required to develop any
analysis software.
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