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1. Abstract
Symmetry of an optimal solution of Semi-Definite Program (SDP) is discussed based on symmetry property of the central
path that is  traced by a primal-dual interior-point method. A symmetric SDP is defined by operators for rearranging
elements of matrices and vectors, and the solution on the central path is proved to be symmetric.  Therefore, it is
theoretically guaranteed that a symmetric optimal solution is always obtained by using a primal-dual interior-point
method. The optimization problem of symmetric trusses under eigenvalue constraints is shown to be formulated as a
symmetric SDP. Numerical experiments illustrate convergence to strictly symmetric optimal solutions.
2. Keywords: semidefinite program, primal-dual interior-point method, structural optimization, eigenvalue optimization

3. Introduction
Symmetry of an optimal solution has great significance from practical point of view especially in structural optimization.
Since most of structures actually constructed have some symmetry properties, it is desired to obtain a symmetric design as
a result of optimization. Consider the truss optimization problem to find optimal cross-sectional areas for a given
configuration. To obtain the symmetric optimal truss design, we usually assign a symmetric truss configuration. However,
if a nonlinear programming approach such as sequential quadratic programming is used, such solution cannot be obtained
in general even if it exists. Even for the case where no asymmetric solution exists and a symmetric initial solution is given,
a conventional nonlinear programming approach does not converge to a symmetric solution due to accumulation of
numerical error.
In practical situations, a symmetric solution can be obtained by assigning equality constraints on the variables, or by
simply linking the design variables. It is not clear, however, whether the optimal cross-sectional areas for symmetric truss
configuration is really symmetric, and whether additional constraints are not restricting the design space to exclude a
possibility for obtaining an asymmetric optimal solution that has smaller objective value than any symmetric solution.
In this study, we discuss symmetry property of an optimal solution of the Semi-Definite Program (SDP) problem.  In the
authors' recent paper [1], we have observed for topology optimization problems of symmetric trusses that symmetric
optimal solutions are obtained without any additional constraints if we use a primal-dual interior-point method for SDP.
The theoretical background behind such phenomenon will be investigated.
SDP is a class of convex mathematical programming and has various fields of application [2], including structural
optimization. The effectiveness of SDP has been shown for topology optimization of trusses under constraints on
compliance [3] and the fundamental eigenvalue of free vibration [1]. The SDP can be solved in polynomial time worst-
case complexity by using the primal-dual interior-point method which has been first developed for linear program [4], and
has been successfully extended to SDP [5,6]. In many interior-point methods, an optimal solution can be obtained by
numerically tracing the interior path which is referred to as central path. It is very important, therefore, to investigate the
properties of the central path of SDP. Although several studies have been presented concerning the properties of the
central path [7,8], no study has been reported for the SDP problem with certain symmetry. In this study, we will prove that
a symmetric optimal solution is theoretically guaranteed to be obtained for a  symmetric SDP if a primal-dual interior-point
method is used.

4. Primal-dual pair of SDP and central path

Let nS  denote the sets of all nn ×  real symmetric matrices. nn SS ⊂+  and nn SS +++ ⊂  denote the sets of all positive

semidefinite and positive definite real symmetric matrices, respectively. The notation VU •  is used to stand for the

inner product of U  and nn×∈ RV :
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Let nS∈iF  ),2,1( mi �= , mR∈b and nS∈C . The standard form SDP problem and its dual are formulated as

P: min XC •
s.t. ii b=• XF , ),,2,1( mi �= , nS+∈X ;
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Here, X  and Z  are variable matrices and m
iy R)( ∈=y is a variable vector. Throughout the paper, the linear

independence of iF  ),2,1( mi �= and the existence of a feasible solution ),,( ZyX  satisfying nS ++∈X  and
nS ++∈Z  are assumed.

The central path for the SDP problems (P and D) is a trajectory of the solutions ),,( ZyX  to a family of the following

parametric problem )CP( �  with respect to the parameter 0>� :

)CP( � IXZ �= � )0( >� � (1)
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nS ++∈ZX, � (4)

where I  denotes the nn ×  identity matrix. Letting ))(),(),(( ��� ZyX  denote the solution to )CP( � , the following

theorem has been obtained:
Theorem 4.1. ([6] Theorem 3.1.) )CP( �  has a unique solution ))(),(),(( ��� ZyX �

Notice here that ),,( ZyX  is the optimal solution to SDP (P and D) if and only if it satisfies Eqs.(1)-(4) with 0=� .

The primal-dual interior-point method [2,6] computes a solution, which is written as ),,( ZyX , by tracing the central

path as 0→� . Therefore, the obtained ),,( ZyX can be regarded as the limit 0→�  of ))(),(),(( ��� ZyX � In

order to show the symmetry property of ),,( ZyX , we investigate the symmetry property of ))(),(),(( ��� ZyX in

the following.

5. Definitions and properties of operators
Let },,2,1|)({ niinn �=Π=Π  denote a permutation of n  indices n,,2,1 � , where )(inΠ  stands for the location of

index i  in nΠ . n
ie R)( ∈=e  denotes the vector satisfying 1=ie  or 1−  ),,2,1( n� . The operators nn

nS RR:)( �Π

and nnnn
nQ ××Π RR:),( �e  are defined for nΠ  and e  as

Definition 5.1.  The operators )( nS Π  and ),( enQ Π  are defined for a vector n
ip R)( ∈=p  and nn

jiA ×∈= R][ ,A ,

respectively, such that applications of )( nS Π  and ),( enQ Π result in )( nS Πp  and ),( eA nQ Π  satisfying
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In the subsequent discussions, )( nS Π  and ),( enQ Π  are often abbreviated by S  and Q , respectively, if their

dependence on nΠ  and e  is understood from the context. From Definition 5.1, the following properties for a

permutation nΠ  and a vector nR∈e  are deduced immediately:

Property 5.2. For matrices A  and nn×∈RB ,
QQQ BAAB =)( , (5)

BABA •=• QQ , (6)
AA =QQ ))(( . (7)

Property 5.3. For a matrix nS∈D ,
nQn SS ++++ ∈⇔∈ DD . (8)

6. Symmetric SDP and symmetry of its solution

6.1 Symmetry with respect to permutations

Consider the following symmetry conditions for matrices iF  and C , and a vector b  of SDP problem (P and D).



Condition 6.1.  There exist permutations mΠ , nΠ  and a vector nR∈e  such that

bb =Π )( mS , (9)

CC e =Π ),( nQ , (10)
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The SDP that satisfies Conditon 6.1 is referred to as a symmetric SDP .

In the following discussions, we fix the parameter 
  to *�  and the solution to )CP( *�  (Eqs.(1)-(4)) is  denoted by

*))(*),(*),((*)*,*,( ��� ZyXZyX = . The following theorem guarantees the symmetry of the solution on the central

path of a symmetric SDP.

Theorem 6.2. Suppose b , iF  and C  satisfy Conditon 6.1. Then *)*,*,( ZyX  satisfies

** XX =Q , ** yy =S , ** ZZ =Q . (12)

Proof. Since *)*,( ZX  satisfies Eq.(4), it follows from Eq.(8) that Q*X  and nQ S ++∈*Z . We obtain

Q
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i (from Eq.(6) and Eq.(7))

*)( XF •= Π
Q
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(from Eq.(11))

)(im
bΠ= (from Eq.(2))

ib= , (from Eq.(9))

which implies that Q*X  satisfies Eq.(2). It can be obtained that
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Thus, )*,*( QS Zy  satisfies Eq.(3). )*,*( QQ ZX  satisfies Eq.(1) because

QQ ** ZX

Q*)*( ZX= (from Eq.(5))

Q)( I�= (from Eq.(1))

I�= .

Hence )*,*,*( QSQ ZyX  is also a solution of the problem )CP( *� , and uniqueness of the solution (Theorem 4.1) leads to

Eq.(12).



6.2 Invariance of solution with respect to basis transformation

Let iF̂  and Ĉ  be defined with an orthogonal matrix nn×∈RH  (i.e. 1−= HHT ) as

HFHFi i
T=ˆ , ),,2,1( mi 
= (13)

CHHC T=ˆ . (14)

Let )P̂C( �  denote the system Eqs.(1)-(4) with )ˆ,ˆ(),( CFCF ii = . The following theorem implies if *y  is a solution to

)CP( *� , then it is also a solution to )P̂C( *� .

Theorem 6.3. Let *X̂  and nS∈*Ẑ  be defined as

HXHX **ˆ T= , HZHZ **ˆ T= .

Then, *)ˆ*,*,ˆ( ZyX  is the unique solution of )CP( *� .

Consider an SDP problem defined by b , iF̂  and Ĉ  satisfying Eqs.(13) and (14), where b , iF  and C  satisfy

Condition 6.1. Then the central path of the SDP problem corresponding to b , iF̂  and Ĉ  is defined as the trajectory of

the solutions to )P̂C( � . If *y  is a solution on the central path )CP( *�  of the symmetric SDP defined by b , iF  and C ,

then Theorem 6.3 implies that *y  is also a solution to )P̂C( *� . In other words, if an SDP satisfies Conditon 6.1, we can

choose an arbitrary basis for matrices and define an alternative SDP problem.  Then an optimal solution y  obtained by a

primal-dual interior-point method does not depend on the choice of the basis.

7. Application: optimization of trusses under eigenvalue constraints

7.1 Problem formulation
A truss configuration is given with fixed locations of nodes and members. The values and locations of nonstructural
masses are also given. The optimal cross-sectional areas are found under constraints on fundamental eigenvalue of free
vibration. Let n  and m  denote, respectively, the number of freedom of displacements and number of members of the

truss. The vector of member cross-sectional areas, which are design variables, is denoted by m
iy R)( ∈=y . Let nS∈K

and n
s S∈M  denote the stiffness matrix and the mass matrix due to the structural mass both of which are functions of y .

The mass matrix for nonstructural masses is denoted by nS∈0M .

Let rΩ  denote the eigenvalue of free vibration. The lower bound of the eigenvalues is denoted by Ω . The optimization

problem for specified fundamental eigenvalue is formulated as

OP: min ∑
=

m

ii yc
1i

s.t. Ω≥Ω r , ii yy ′≥  ),,2,1 ;,,2,1( minr 

 == ,

where m
ic R)( ∈=c  is the vector of member lengths and iy′  is the lower bound for iy .

The authors  [1] showed that the problem OP is equivalent to the following D’  with constant matrices iK  and n
i S∈M
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Notice here that D’  corresponds to D with ii cb −= , iii KMF −Ω=  and 0MC Ω−= .

7.2 Symmetry of optimal design
Symmetric configuration  of a truss is defined by the following conditions:

1. There is an axis or a plane of symmetry.



2. The locations of nodes and members are symmetric.

3. The locations and the values of the nonstructural masses are symmetric.
4. Support conditions are symmetric.

The vector of cross-sectional areas y  is called a symmetric design if the symmetrically located members have the same

cross-sectional areas. The term symmetric truss is used to stand for the truss with a symmetric configuration and a
symmetric design. Since most of trusses actually built are symmetric, an optimal symmetric truss is desired to be obtained
as a result  of optimization. In such case, a symmetric truss configuration is given for the optimization problem.
Our concern is whether an optimal symmetric design is always obtained for a symmetric configuration.
For an example, consider a symmetric truss configuration and assignment of member number as shown in Fig.1. We can
easily see that the vector of member lengths c  satisfies cc =Π )( mS  for an appropriate mΠ ; e.g. 1 2 3 4 5 6 7 8=Πm .

Therefore, the corresponding SDP problem satisfies bb =Π )( mS  in Condition 6.1, where ii cb −= . Suppose the

coordinate system such that the displacement of a node in a direction of the local coordinate, or the displacements of
nodes of the same value in the directions of the local coordinates lead to a symmetric or an antisymmetric deformation.
We refer to such a coordinate system as a symmetric coordinate system. An example of symmetric coordinate system is as

shown in Fig.2. Then, for a symmetric coordinate system, it is straightforward to show that )(
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0 MM e =Π nQ  for appropriate mΠ , nΠ  and e , which implies that iii KMF −Ω=  and

0MC Ω−=  satisfy Condition 6.1. Usually the coordinates are assigned in the same directions as one of the global

coordinates as shown in Fig.1 and, generally, an SDP problem formulated by using such a coordinate system does not
satisfy Condition 6.1. However, the relation of the symmetric coordinate system and any orthogonal coordinate system is
written by the transformation matrix H . Then Theorem 6.3 implies that a symmetric optimal design y  is guaranteed to

be obtained for any orthogonal coordinate system and assignment of member and coordinate numbers.
Note that a space truss sometimes has more than one plane of symmetry. In such case, we simply apply mΠ , nΠ , e  and

H successively for each plane, and we can prove symmetry of the solution with respect to each of the selected plane.

7.3. Examples
Optimal cross-sectional areas are found for symmetric plane trusses by using the SDP software; SDPA  [9]. Sequential
Quadratic Programming (SQP) [10] is also applied for comparison purpose. The material of the members is steel where

Young’ s modulus and density are 205.8 Gpa and 33 kg/cm 1086.7 −× . The specified eigenvalue is 1000.0 22/srad , and
2cm 0.10=′y  for all the members.

Fig. 3: Otimal solution obtained by SDPA. Fig. 4: An optimal solution obtained by SQP.

Fig. 1: 5 degree-of-freedom symmetric truss. Fig. 2: Symmetric coordinate system.



Consider a five-degree-of-freedom plane truss configuration as shown in Fig.1. Nonstructural masses are kg 101.2 5×  at

nodes a  and b , and kg 101.2 6×  at node c . This configuration is symmetric with respect to the x - and y -axes, and

8=m , 5=n . The nodal coordinates of nodes b , c , d  and e  are assigned as  (100.0 cm, 0.0), (0.0, 0.0), (200.0 cm, 0.0)
and (150.0 cm, 150.0 cm), respectively.
Note that iF  )8,,2,1( �=i  are linearly independent for this configuration. Consider a symmetric coordinate system as

shown in Fig.2. From the symmetry properties with respect to x - and y -axes, it can be seen that b , iF  and C  with

respect to the symmetric coordinate system satisfy Condition 6.1 with 1 2 3 4 5 6 7 8=Πm , 2 1 3 5 4=Πn  and

)1,1,1,1,1( −=e , or with 6 7 8 5 4 1 2 3=Πm , 4 5 3 1 2=Πn  and )1,1,1,1,1(=e . The basis transformation matrix H  from

the symmetric coordinate system (Fig.2) to the coordinates as shown in Fig.1 can be obtained as
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If D’  is formulated with respect to the coordinate system in Fig.1, then, from Theorem 6.3, symmetric optimal cross-
sectional areas are guaranteed to be obtained without any pre-process by using a primal-dual interior-point method.

9. Conclusions
It has been proved that the solution on the central path of a symmetric SDP is symmetric. Since an optimal solution is
obtained as the limit of the central path, the optimal solution obtained by an interior-point method that traces the central
path is also symmetric even if there may exist other asymmetric optimal solutions.
Optimization problem of a symmetric truss configuration for specified fundamental eigenvalue of vibration has been
formulated as a symmetric SDP. It has been proved that a symmetric optimal truss design exists and can be obtained by a
primal-dual interior-point method. It has been shown through numerical experiments that the symmetric solution can be
obtained by an SDP software even for the case where the conventional nonlinear programming approach converges to an
asymmetric optimal solution.
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