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1. Abstract
The author's methods of design sensitivity analysis and optimization of coincident nonlinear critical load factors are
shown to be effective for a finite dimensional system with moderately large numbers of design variables and degrees of
freedom of displacements. Optimum designs under constraints on linear and nonlinear buckling load factors are found for
spherical trusses subjected to distributed loads and a concentrated load at the center, respectively. It is shown that an
approximate optimum design with coincident nonlinear critical points is obtained by scaling the optimum designs under
constraints on linear buckling load factors even for the case with significant prebuckling deformation.
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3. Introduction
In the design process of dome structures that resist to external loads mainly with in-plane stress and deformation, it is
important to assign appropriate stiffness distribution so that the structure has enough safety considering instability against
possible large design loads. For plates and column-type structures such as transmission towers and high-rise buildings,
linear eigenvalue formulation is usually applied to evaluate buckling loads because the deformation before buckling is
negligible. For a shallow shell subjected to loads in the normal direction of the surface, however, the effect of prebuckling
deformation should be incorporated in evaluating the buckling loads.
Optimization of structures for specified linear buckling load factor has been extensively investigated including the case
where the optimum design has multiple or repeated eigenvalues [1]. Recently, there have also been several studies for
optimum design of structures for specified nonlinear buckling load factor considering prebuckling deformation [2,3].
Ohsaki et al. [4] presented an optimization method considering reduction of maximum load factor of a imperfection
sensitive structure.
It is easy to find optimum designs for specified limit point load factor by using a gradient based mathematical
programming approach, because the sensitivity coefficients of the limit point load factor with respect to the design
variables such as the cross-sectional areas and nodal coordinates of finite dimensional systems are bounded. The
sensitivity coefficients of bifurcation load factor, however, are generally unbounded for modification of design variables.
For a symmetric structure subjected to symmetric proportional loads, a symmetric design modification is classified as a
minor imperfection [5] or second order imperfection where the sensitivity coefficients are bounded even for a bifurcation
point [6].
It is well known that an optimal solution under buckling constraints often has multiple critical load factors [7]. For such
cases, it is very difficult to obtain optimal solution even for linear buckling load constraints. The method in Ref. 4 for
nonlinear buckling, however, is applicable only for a solution with simple critical load factor. In the field of nonlinear
stability analysis, the critical point with multiple null eigenvalues is called coincident critical point [8,9]. Recently, the
first author has developed sensitivity analysis and optimization methods for problems with coincident critical load factors,
and presented some solutions of a small truss [10].
In this paper, the method of design sensitivity analysis of coincident nonlinear critical loads and the formulation of
optimum design under nonlinear buckling constraints presented in Ref. 10 are shown to be effective for a finite
dimensional system with moderately large numbers of design variables and degree of freedom of displacements.
Optimum designs with coincident critical points are found for a spherical truss. It is shown that imperfection sensitivity is
not enhanced as a result of optimization, and the reduction of maximum load due to a minor imperfection is sometimes
equivalent with that to a major imperfection.

4. Nonlinear Stability Analysis
Consider a finite dimensional elastic system subjected to a set of proportional loads 0PP Λ= , where Λ  is the load

factor and 0P  is the constant vector of load pattern. The effect of prebuckling deformation should be considered in

evaluating the buckling loads of shell-type structures subjected to loads in the normal direction of the surface. In this
case, the equilibrium path should be traced by an incremental path-following analysis .
The vector of state variables such as nodal displacements is  denoted by }{ iQ=Q . Lagrangian formulation is used for

defining the strains. The total potential energy ),( ΛΠ Q  is a function of Q  and Λ . Let iS  denote partial differentiation

of Π  with respect to iQ . Stationary condition of Π with respect to iQ  leads to the following equilibrium equations:

0=iS , ),,2,1( fi �= (1)



where f is the number of degrees of freedom. Let t denote a parameter defining a point along the fundamental equilibrium
path that originates the undeformed initial state. t may represent Λ , iQ , or the arc-length of the path, and is written in

general form as
),( Λ= Qgt (2)

The Hessian of Π  with respect to iQ  is denoted by ][ ijS=S  which is called tangent stiffness matrix or stability matrix.
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where rΦ  is normalized by
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Note that the eigenvalues r

�
 are numbered in increasing order; i.e. 1

�
 is the lowest eigenvalue.

The value of Λ  that satisfies 01 =
�

 is called critical load factor which is denoted by cΛ . The point satisfying 01 =
�

along the equilibrium path is called critical point which is indicated by ctt = . In the following, the values corresponding

to ctt = is denoted by a superscript c)( . It is well known that an optimum design under constraints of nonlinear buckling

load factors often has a coincident critical point where more than one eigenvalue simultaneously vanish.

6. Design Sensitivity Analysis
Consider a finite dimensional structure defined by a design variable vector }{ iA=A . iA  may directly correspond to the

cross-sectional area or thickness of a structural element, or may be a scaling factor for a set of cross-sectional areas. Let a
prime denote total differentiation with respect to iA . Partial differentiation with respect to iA  while Q  and Λ  are fixed

is denoted with a bar. Sensitivity analysis with respect to the design variable iA  is  called design sensitivity analysis in the

following, although imperfection sensitivity and design sensitivity are mathematically equivalent.
We consider a design modification that satisfies
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which is classified as a minor imperfection [6]. Eq. (4) indicates that the imperfection does not have direct effect on the
internal force iS  in the direction of the buckling mode c

1Ö . It is well known that the imperfection sensitivity coefficient

of a bifurcation load factor corresponding to a major imperfection that does not satisfy Eq. (4) is not bounded. For a minor
imperfection, however, the sensitivity coefficients are bounded even for a bifurcation point [6].

Suppose the design variables are modified while the lowest eigenvalue 1

�
 of S  is fixed at *

1

�
. The value of t where
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=  is  satisfied is denoted by *t . Then *t  is a function of iA . Other variables corresponding to the equilibrium state
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By differentiating Eqs. (1)-(4) with respect to iA , and by using 0'1 =
�

, the following equations are derived at *tt = :
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where Λ)(  denotes partial differentiation with respect to Λ , and ig  is the partial differentiation of g with respect to iQ .

The design sensitivity coefficients of *Q , *Λ , *t  and *
1iΦ  for fixed value of 1

�
 are found by solving a set of 2f+2

linear equations Eqs. (6)-(9).



At the critical point with 01 =
�

, those sensitivity coefficients cannot be obtained because the matrix for Eqs.  (6)-(9) are

singular [4]. Consider a process of tracing the equilibrium path by a finite increment t∆  of the path parameter. Let bt

denote the value of t where 01 <
�

 is first satisfied as t is increased, and define )( b1b1 t
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The sensitivity coefficients of at  and bt  for fixed value of 1

�
 at a1
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 and b1

�
, respectively, are calculated from Eqs.

(6)-(9). Then the sensitivity coefficients at ctt =  where 01 =
�

 is satisfied are obtained by interpolation [5]; e.g.
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where aΛ  and bΛ  are the load factors at att =  and bt , respectively.

7. Optimization Problem for Specified Nonlinear Critical Load Factors
Let ( )A=V  denote the total structural volume which is a function of the vector A  of the design variables. The jth

critical load factor along the fundamental equilibrium path is denoted by jcΛ . The specified buckling load factor is
denoted by Λ . Then the optimization problem is formulated as [10]

Minimize ( )A=V (11)

subject to Λ≥Λ jc ,  ),,2,1( sj �= (12)
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where s and q are the actual multiplicity of the buckling load factor and its possible upper bound. iA  is the minimum

cross-sectional area, and m is the number of members. It has been observed in the numerical experiments that the value of
s does not often change during the optimization process.
It is well known that the design sensitivity coefficients of the buckling load factor defined by a linear eigenvalue problem
are discontinuous with respect to the design variable for the case of multiple eigenvalues [1].  Similar difficulties arise also
for the case of coincident nonlinear critical points. Since r

�
 ),,2,1( sr �=  are not exactly equal to 0 at att =  or bt , the

eigenvectors are defined distinctly, and the sensitivity coefficients are obtained from (6)-(9) without any difficulty. The
eigenvalues corresponding to each eigenvectors, however, may intersect with each other in the region ba ttt ≤≤ . In this

case, the correct pairs of eigenvalues and eigenvectors, which are detected by using the symmetry conditions and
continuity, should be used at at  and bt  in the interpolation equation (10).

The sensitivity coefficients of r

�
 that appear in (13) are obtained also by interpolation. Differentiation of (3) at att =  or

bt  under the condition that 1

�
 is fixed leads to
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where 0'* ≠r

�
 at this time for sr > . By premultiplying riΦ  to (15), taking summation over i, and incorporating (2) and

(3), the following equation is derived:
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Note that '*
iQ  has been already obtained from (6)-(9) at att =  and bt , and '*

riΦ  is not needed in evaluating '*
r

�
, which

is similar to the case of linear eigenvalue problems . The sensitivity coefficients 'ar

�
 and 'br

�
 are found by evaluating

(16) at att =  and bt , respectively. Then 'c
r

�
 at the critical point is calculated by the following interpolation equation:
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Note that t is not fixed at ct  while evaluating 'c
r

�
; i.e. ct  is also a function of iA  under the condition 01 =

�
.

8. Examples
Consider a spherical truss as shown in Fig. 1, where kN8.9=P . The open angle is 120 deg. and the radius of the circle

where the pin supports are located is 800 cm. The members in the meridian directions have the same length. The specified
buckling load factor is 100. The elastic modulus is 205.8 GPa. iA  is equal to 1.0 cm2 for nonlinear buckling constraints,

and 0 for linear buckling constraints. The design variables are member cross-sectional areas. Based on the symmetry
property, the members are divided into 14 groups of which members have the same cross-sectional area. The  Lagrangian
formulation is used for defining the strain-displacement relation. The fundamental equilibrium path is traced by using the
displacement increment method. Optimum designs are found by DOT Ver. 5.0 [11], where the method of modified
feasible direction is used.
The optimal cross-sectional areas are as shown in Fig. 2, where the width of each member is proportional to its cross-
sectional area. It is observed from Fig. 2 that the members near the center have large cross-sectional areas. The total
structural volume is 1.2677 m3 and the first three buckling load factors along the fundamental equilibrium path are 99.961,
99.952 and 99.728. Note that three buckling load factors corresponding to two bifurcation points and a limit point are
closely located at the optimum design. This type of buckling behavior is called hill-top branching [8].

Let c
jt  denote the value of t at c

jΛ . In this example, a limit point is reached at c
1tt = , and Λ  decreases as t is increased

from c
1t . Then two symmetric bifurcation points are found slightly beyond the limit point. Therefore, c

2Λ  and c
3Λ  are a

little less than c
1Λ .

The linear buckling load factor of the optimum design is 228.153 which is more than twice of the specified nonlinear
buckling load factor. The deflection 	  of the center node at buckling is  33.7296 cm.  Therefore, prebuckling deformation
is very large and should be properly incorporated in evaluating the buckling loads of a single-layer spherical truss as
shown in Fig. 1 subjected to a concentrated load. Variation of r

�
is plotted with respect to 	  in Fig. 3. Note that the curve

a in Fig. 3 corresponds to a limit-point-type mode. The curve b is duplicate and corresponds to bifurcation-type modes.
In the following, imperfection characteristic of the optimal truss are investigated and compared with a non-optimal
solution. Fig. 4 is the plot of maximum loads of imperfect systems. The nodes are dislocated in the direction of the
symmetric buckling mode corresponding to the limit-point-type instability, where the mode is normalized so that the
maximum absolute value of the components is  equal to 1. The horizontal axis is the imperfection parameter c which is the
scaling factor to be multiplied to the normalized mode. For 0>c , the imperfection of the center node is in the negative
z-direction, and the critical point of the imperfect system is a limit point. In this case, the imperfection sensitivity
coefficient is bounded. For 0<c , the critical point is a bifurcation point and this type of imperfection corresponds to a
minor imperfection. Therefore, the imperfection coefficients are also bounded even for the bifurcation points.

(a) plan

(b) elevation
Fig. 1.  A spherical truss. Fig. 2.  Optimum design for concentrated load.

Fig. 3.  Relation between deflection of center node
   and eigenvalues.

Fig. 4.  Imperfection sensitivity in the direction of
the limit-point-type mode.

Fig. 5.   Imperfection sensitivity in the direction of
the bifurcation-type mode

Fig. 6.  Imperfection sensitivity of the initial solution
in the direction of the buckling mode.



Fig. 5 shows the imperfection sensitivity in the direction of the antisymmetric buckling mode corresponding to the
bifurcation-type instability. In this case, the imperfection corresponds to a major imperfection, and the imperfection
coefficients are not bounded at 0=c . It should be noted, however, the magnitude of reduction of maximum load factor
for this case is in the same order as symmetric imperfection in a finite range, e.g. cm1=c , of the imperfection parameter.

Therefore, imperfection sensitivity at the perfect system corresponding to 0=c  is not important in practical situation,
and minor imperfection should be properly considered in evaluating the maximum loads of imperfect systems. It has been
confirmed that imperfection sensitivity characteristics in the directions of linear combination of the two bifurcation-type
modes are similar to that in Fig. 5; i.e. no interaction of symmetric bifurcation points as the Augsti model [9] has been
observed.
Fig. 6 shows the imperfection sensitivity in the direction of the limit-point-type mode of the initial design with

2cm20.0=iA  for all the members. Since the critical point is a simple limit point, the maximum load factor is linear with

respect to the imperfection parameter. The reduction of the maximum load, e.g., for cm1=c  is in the same order as that

for the optimum design. Therefore the imperfection sensitivity does not increase as a result of optimization.
An optimum design has been also found under linear buckling constraints by using the semi-definite programming
approach proposed in Ref. 12, which has also been effective for multiple frequency constraints  [13]. The total structural
volume is 35 cm102.75730×  and the nonlinear buckling load factor of the optimum design is 21.6916. Let NLA  and

LINA  denote the optimum cross-sectional areas, respectively, under nonlinear and linear buckling constraints. Note that
LINA  is almost proportional to NLA  which has been shown in Fig.1. If we scale LINA  to satisfy 100c

1 =Λ , then the total

volume is 36 cm101.27224×  which is only slightly more than that of NLA . Therefore, for this case, it is practically

acceptable to obtain an optimum design under linear buckling constraint and just scale it up to have approximate optimum
design under nonlinear buckling constraints.
The optimal cross-sectional areas for the case of uniformly distributed vertical loads is as shown in Fig. 7. It is observed
from Fig. 7 that the cross-sectional areas are almost same except those of the members connected to the supports. In this
case, six critical points are closely located. The linear buckling load factor of the optimum design is 109.866 which
exceeds the specified nonlinear buckling load factor only about 10%. Therefore, prebuckling deformation is negligible for
the case of uniformly distributed loads.

9. Conclusions
The author's method of design sensitivity analysis of coincident nonlinear critical loads and the formulation of optimum
design under nonlinear buckling constraints have been shown to be applicable to a finite dimensional system with
moderately large degree of freedom of displacements. Optimum designs with closely spaced critical points have been
found for a spherical truss, and imperfection sensitivity of optimum designs has been discussed in detail.
It has been shown that optimization does not have any disadvantage in view of reduction of maximum load factor.
For spherical trusses, the buckling modes do not interact strongly with each other as a result of optimization, because the
closely located critical points are a limit point and symmetric bifurcation points. It has also been sown that the magnitude
of reduction of maximum load factor due to a symmetric imperfection that is classified as minor imperfection may be in
the same order as that due to an antisymmetric major imperfection. Therefore, the fact that the imperfection sensitivity of
the bifurcation load factor is unbounded is not important in practical situation. Minor imperfection should be properly
considered in evaluating the maximum loads of imperfect systems.
The optimum designs have been compared with those under constraints of linear buckling load factors. It has been shown
that the optimum designs under linear and nonlinear buckling constraints are almost same for the case of distributed loads.
Although the effect of prebuckling deformation is very large for a spherical truss that carries a concentrated nodal load, an

Fig. 7.  Optimum design for distributed loads.



approximate optimum design may successfully be obtained by scaling the optimum design under constraints on linear
buckling loads.
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