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ABSTRACT
An optimization method is presented for long-span arch-type frames for specified seismic

responses considering spatial variation of ground motions. Sensitivity coefficients of the
optimum objective value with respect to the parameters defining spatial variation of the
seismic motions are computed based on post-optimal analysis. It is shown that the second-
order parametric sensitivity coefficients are easily obtained if the first order coefficients

vanish due to symmetry and antisymmetry of the structure and ground motions.

1. INTRODUCTION

In the design process of shells and spatial structures, it is important to consider the effects
of spatial variation of seismic motions which are classified into (a) wave passage effect
due to delay of the wave being transmitted to the supports, (b) incoherency effect due
to reflections and refractions of the wave in the heterogeneous medium, and (c) the local
effect or site response effect due to difference of the soil conditions near the supports. Der
Kiureghian and Neuenhofer [1] presented a response spectrum approach based on coherency
functions between the ground motions at the supports.

Hao and Duan [2] showed that incoherency of the support motions leads to torsional
responses of frame structures. Zembaty [3] carried out a parametric study to discuss the
effect of incoherency parameters. No attempt, however, has been made for developing an
optimal design method considering effects of spatial variation of seismic motions.

Since the parameters for the spatial variation cannot be clearly defined, it is useful if
sensitivity coefficients of optimal solution with respect to those parameters are obtained.
Dependence of optimal solutions on parameters defining the optimization problem may be
evaluated by the parametric programming approach or post-optimal analysis [4]. Applica-
tion of the parametric programming to structural optimization problems is called optimum
design sensitivity analysis [5].



In this paper, an optimization method by Ohsaki et al. [6] is extended to carry out
post-optimal analysis of long-span arch-type structures considering spatial variation of
ground motions. It is shown that the second-order parametric sensitivity coefficient is
easily obtained if the first-order parametric sensitivity vanishes.

2. RESPONSE TO SPATIALLY VARYING GROUND MOTIONS

Consider a long-span structure discretized by the finite element method. The total Degrees-
Of-Freedom (DOF) of the internal nodes and supports are divided into Unconstrained
DOF (UDOF) and Support DOF (SDOF). Let = and u denote the vectors of absolute
displacements corresponding to UDOF and SDOF, respectively. The stiffness matrix, mass
matrix and damping matrix, denoted by K, M and C, respectively, are divided into the
components corresponding to UDOF and SDOF as indicated by the subscripts z and u,
respectively. The equation of motion can then be written as
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where f is the vector of reaction forces.

Let @* and =% denote the pseudo-static and dynamic components of @, where z¢ is
divided into components of eigenmodes ¢, (i = 1,2,...,n) of fixed SDOF. The ith natural
circular frequency and damping coefficient are denoted by w; and (;, respectively. A vector
ri is defined as
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where 2, is a vector whose kth component is 1 and the remaining components are 0.
Let si; denote the modal response to the input w; at the kth SDOF. Suppose the
representative response z(f) such as a strain of an element is defined as
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where s is the number of SDOFs, and f; is the participation factor of the ith mode to the
input at the kth SDOF. Note that Der Kiureghian and Neuenhofer [1] defined z(¢) only
in terms of . In this paper, the second term in (3) has been added to include in z(t) the
response defined by x and u, e.g. the strain of a member connecting to a support.
Consider a response to the horizontal component of a ground motion. A coherency
function is used for representing the wave passage effect and the incoherency effect. The
coherency between the ground accelerations iy and i at kth and {th SDOFs is given as [7].
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where o is the incoherency factor, dy; is the horizontal distance between kth and /th SDOF,
dy, is the projected distance of dy, to the horizontal plane, v, is the velocity of shear wave,
and vapy, is the apparent velocity of the shear wave. Note that 7 is an auxiliary parameter
for indicating incorporation of the wave passage effect with 5 = 1, and that effect is not
considered if i = 0.

Assuming that uy is a zero-mean jointly stationary process, and that the peak factors for
the input quantities and the responses are same, the mean maximum response E[max |z(t)|]
of z(t) is written as
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where u" and Spg(w, () are the specified maximum displacement and the displacement
response spectrum of the kth SDOF, and ou,, 0s,,, Pupurs Pussy; and py, o, may be referred
to Refs. 1 and 6; e.g. o, is given as
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where the power spectrum Gj, 4, (w) is defined in terms of the response spectrum as
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where 7 is the duration of the motion and ¢,(w) is the peak factor of the response to white
noise. The parameter ¢, is equal to 3 in the following example, and wik is calculated to
represent finite power for the pseudo-static input.

The difference in the local amplification can be modeled by simply assigning different
values of Spy(w, () for the SDOFs. This simple model is used in the examples to evaluate
the effect of the pseudo static components on the total response quantities.

3. OPTIMIZATION PROBLEM AND DESIGN SENSITIVITY ANALYSIS
Consider a structure such as a frame or a truss discretized by one-dimensional finite ele-
ments. The number of elements is denoted by m. Let L; and A; denote the length and
cross-sectional area of the ith element. The design variable is the vector A = {A;} as-
suming other cross-sectional properties such as the second moment of area are functions
of A;.

Let £ (A) denote the representative mean maximum strain of the ith member computed
from (7), where a; and by should be defined appropriately. The strain due to self-weight



and the static loads is denoted by £(A). The optimization problem for minimizing the
total structural volume is formulated as

Minimize V/( Z A;L; (10)
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where A; is the lower bound for A;.

The problem defined above is to be solved by a gradient based method. Therefore the
Design Sensitivity Coefficients (DSCs) of the objective and constraint functions need to be
computed. Since the DSCs of static strains are obtained from a well-established method,
only the formulations for the DSC of €} (A) are briefly summarized.

Let A* denote a representative design variable which is a component of A. Eq. (2) is
first rewritten as
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and is differentiated with respect to A* as
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where a prime indicates partial differentiation with respect to A*. Therefore, computation
of the inverse matrix or its DSCs is not needed. By using (4),
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is derives. The DSC of b, is obtained by differentiating (5) as
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Note that Gy, (w), Guiy (iw), Gu,y, (iw), and o, do not depend on A*. From (8),
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is derived. Other terms are differentiated similarly. Since partial differentiation is not
included in the integrand, integration should be carried out only once in the process of
response analysis. Therefore, the increase of number of design variables does not lead to
rapid increase of the computational cost.

4. POST-OPTIMAL ANALYSIS
Since the solution of an optimization problem depends on the parameters which appear in
the objective and/or constraint functions but are kept constant during the optimization



process, it is practically important to investigate the semsitivity of the optimal solution
and/or the optimal objective value with respect to such parameters.
Consider an optimization problem as

Find C(p) = 1\%1} Clz,p) (18)
subject to Gi(x,p) <0, (i=1,2,...,r) (19)

where  and p = {p,} are the vectors of variables and parameters, and C'(p) is the optimal
objective value that is conceived as a function of the parameter vector p.

Suppose that the Lagrange multipliers for the constraints have been found as the result
of optimization. If the multipliers are not automatically computed, those are obtained by
solving a system of linear equations [8]. Sensitivity of the optimal objective value with
respect to p; is found from [4, 5]
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where J; is the Lagrange multiplier for the ith inequality constraint. Note that the sen-
sitivity coefficients of the optimal variables with respect to the parameter are not needed
for computing those of the optimal objective value.

By differentiating (20) with respect to pg, the second order parametric sensitivity of
the optimal objective value is written as [4, 5]
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where m is the number of variables and a hat indicates the optimal value that is a function
of p. Note that di,/0p, and d\;/p;, are needed for computing 8°C /Op;Opg. Since the
Hessian of the constraint function with respect to the variables is needed for finding 04/ 0py
and 9 i/Opy, it is not practically acceptable to compute those values for a complicated
optimization problem as considered in this paper.

Consider a case where all the variables of the optimal solution are even functions of a
parameter p;. In this case, the first order parametric sensitivity coefficients d#;/0p, and
X/ dp; vanish at p; = 0 and (21) is reduced to
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Although the parametric sensitivities of the variables are not obtained, the parametric
sensitivities of the optimal objective values will lead to useful information in the process of
designing structures. Note that the first order sensitivity usually dominates over the second
order, and the latter need not be computed. For a symmetric structure, however, due to



Fig. 2: Optimum cross-sectional areas with-
Fig. 1: A 39-bar arch-type plane frame.  out spatial variation of seismic motion.

symmetry or antisymmetry conditions of the structure and ground motions, the first order
sensitivity coefficients vanish and the second order coefficients give useful information on
characteristics of optimal solutions.

5 EXAMPLES

The response spectrum by Newmark and Hall [9] is used in the examples. Let C4, Cy and
Cp denote the maximum values of acceleration, velocity and displacement of the ground
motion. In their definition, however, the maximum response displacement at w = 0 does
not agree with C'p. Therefore Sp for the small range of w is given as

Sp(w,¢) = Cp(1.0 + kw?) (23)

where £ is a parameter defined by (. A scaling parameter y is used for incorporating the
local amplification effect, where u™* is also scaled as u"™* = ,Cp.

Consider a rigidly-jointed 39-bar arch-type plane frame as shown in Fig. 1. The span
length is 100.0 m and the lower nodes are located along a circle where the open angle
is 50 deg. The upper nodes are also on a circle, and the difference between the radii of
two circles with the same center is 7.5 m. Note that the upper chords, lower chords, and
diagonals have same lengths, respectively. The upper-bound strain £ is 0.001, and the
mass density of the member is 7.86 x 10~% kg/cm?®. A nonstructural mass of 2.0 x 10* kg is
located at each lower node. The vertical load corresponding to the weights of the members
and the nonstructural masses is applied at each node. The parameters are v, = 400.0
m/s, vapp = 2000.0m/s, ¢; = 0.02 for all the modes, Cy = 201.0cm/s?, Cy = 25.0
cm/s, Cp = 18.75 cm, 7 = 25.0 sec. In this case, the value of wnk 18 0.258.

The frame is assumed to be made of sandwich beams with I, = h?4;, where I; is
the second moment of area, and h = 50.0 cm is the distance between two flanges which
is considered as constant. The representative strain of each member is the maximum
value of the edge strain at the member ends. The package DOT Ver. 5.0 [10] has been
used for optimization, where the sequential quadratic programming is used. The 16-point
Gaussian quadrature is used for integration. Computation has been carried out on a
personal computer with AMD Athron 1.0 G Hz.

Fig. 2 shows the optimal cross-sectional areas without the effects of spatial variation;
iLe. a =n= 0. Note that the width of each member in Fig. 2 is proportional to the cross-
sectional area. It may be observed from Fig. 2 that the lower chords near the supports
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Fig. 3: Optimal objective values for o =
0.0,0.01,0.1,0.15,0.2 and second order ap- Fig. 4: Optimum cross-sectional areas con-
proximation at a = 0.0. sidering incoherency effect (o = 1.0).

and the upper chords around the center have large values of cross-sectional areas. The
optimal objective value V is equal to 1.63454 m*®. The triangles in Fig. 3 are the values of
V for a = 0.0, 0.05,0.1,0.15,0.2. The solid curve shows the second order approximation
at a = 0.0, where 9*V/da? = 1.57076 m®. Note that V' is an even function of a; i.e.

observed from Fig. 3 that the optimal objective values are successfully approximated as a
quadratic function of . The value of ady /vy corresponding to o = 0.2 is 0.05 which is not
large enough for a possible incoherency. The value of the second order sensitivity, however,
gives us the estimate for the effect of incoherency on the optimal objective value.

The optimum design for a = 1.0 is as shown in Fig. 4 which has larger cross-sectional
areas in the upper chords around the center than those for a = 0, because the difference
in the movements of two supports causes pseudo static deformation that leads to bending
deformation around the center. The optimal objective value for o = 1.0 is 1.71497 m?.
The value of 3V /da at a = 0.5 is 0.485797 m® which agrees in a good accuracy with the
result by the central difference method. CPU time for optimization is 9.884 sec, whereas
that for post-optimal analysis is 0.020 sec. Therefore, optimal objective value for a range
of parameter is estimated within only a fraction of time for finding an optimal solution.

The optimal cross-sectional areas considering the wave passage effect only, i.e. o =

r

n indirectly corresponds to change of v,y as observed in (6). The pa
coefficient with respect to n at 1 = 1.0 is 5.14221 x 107* m*® which agre
with the result by the central difference method.

Finally, optimum designs are found by considering the difference in the amplification
of the local soils. Let y; and p, denote the scaling factors of the maximum ground dis-
placements and the response spectra in the horizontal displacements of the two supports.
The distribution of optimal cross-sectional areas for p; = 1.2, us = 0.8 is similar to that
in Fig. 4, and V = 1.77694 m®. Note that V is an even function of {1 + pg, and an
odd function of p; — pz. The sensitivity coefficients with respect to y; and uy are same

ametric sensitivity

es in good accuracy



and equal to 0.493577 m®, whereas the coefficients by the central difference method with
Apy = Apg = 0.05 is 0.5107 m?.

6. CONCLUSIONS

A method has been presented for optimum design of structures for specified response to
spatially varying ground motions. The response is evaluated by the response spectrum
approach. Dependence of the optimum objective value on the parameters defining the
spatial variation of the ground motion is explicitly evaluated by using the technique of
parametric programming or post-optimal analysis.

The parametric sensitivity coefficients obtained by the proposed method have been
verified by the example of an arch-type frame subjected to horizontal ground motions. It
has been shown that the second order parametric sensitivity coefficients are easily found if
the first order coefficients vanish. Note that the first order coefficients are usually dominant
over the second order, and the latter need not be computed. For a symmetric structure,
however, the first order coefficients vanish due to symmetry and antisymmetry of the
structure and ground motions.

It has been shown that all of the wave passage effect, incoherency effect, and local
amplification effects lead to increase of the optimal total structural volume that is the
objective function of the optimization problem. This way, the effect of the spatial variation
of the seismic motions may be evaluated through the structural volume that is required
for constructing the structure so as to satisfy the constraints on the response quantities.
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