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ABSTRACT

Two methods are presented for optimization of prestressing order of cable-supported
frames. The cable forces at the final state are first optimized, and the construction process
is inversely traced. The objective function of the problem for optimizing prestressing order
is the sum or the maximum value of the forces introduced by the jacks. The temporary
supports are modeled similarly to the cables. The globally optimal order of prestressing
cables and removing temporary supports is found by the dynamic programming approach.
An approximate method is also presented based on a heuristic measure for selecting a ca-
ble or a temporary support at each step while tracing the inverse construction process
only once. The results by two methods are compared in the example.

1. INTRODUCTION

Increasing number of cable-supported frames have been recently built for the purpose of
material saving, and or simply from aesthetic point of view. By using the cables, overall
stiffness is increased against various loading conditions. Cable forces can easily be adjusted
to recover overall stiffness. Recently, there have been several studies for determination of
cable forces at the final state {e.g. [1]).

It is important for cable-supported structures that the cost for construction strongly
depends on the pretensioning order. The construction period, safety during construction,
and the structural performance at the final state can also be improved by seeking an
appropriate pretensioning order. Although it is very difficult to determine the cost prior
to the construction, it can be estimated by a simple model based on the number of
temporary supports needed or the sum of the forces applied by the jacks. Kaneko et
al. [2] optimized the construction process of trusses using a genetic algorithm.
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Fig. 1: A cable-supported frame.

Arase et al. [3] presented a method for determination of cable forces of a tower-type
structure under the given prestressing order. Chen [4] optimized the cable forces so as to
minimize the amount of the forces actually introduced to the cables under the specified
prestressing order. Ohsaki et al [5] presented a method for finding an approximately
optimal order of prestressing cables of a plane frame. To the authors’ knowledge, however,
there have been no general and practically applicable method for optimizing order of
pretensioning cables as well as removing temporary supports for a space frame.

In this paper, the globally optimal order of prestressing cables and removing temporary
supports is found by using a dynamic programming approach. Approximate solutions are
also obtained by using heuristic measures through the inverse construction analysis.

2. DESCRIPTION OF THE MODEL AND BASIC ASSUMPTIONS
Consider a cable-supported frame as shown in Fig. 1. The optimal cable forces at the final
state is first found, and the construction process is inversely traced from the final state.
Therefore, the order of removal of cables and insertion of temporary supports, which is
called construction order for brevity, is to be optimized through the inverse construction
analysis based on the following assumptions:

1. Cross-sectional and material properties of the frame members and cables are given.

. Locations of cables and temporary supports are specified.

. The extensional stiffness of a cable does not depend on the tensioning force.

. Constraints on stresses and displacements are considered under the vertical loads
including live load and self-weight; i.e. horizontal loads are not considered.

. Cables and temporary supports are modeled similarly by truss members.
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. Additional loads during construction are not considered.

3. OPTIMIZATION OF CABLE FORCES AT THE FINAL STATE

Let P denote the static nodal loads. The stiffness matrix of the frame without cables is
denoted by K. Let N° = {N£} denote the vector of cable forces. Similar forms are used
for expressing the components of vectors. Deformation during the construction process



may be large and assumption of small deformation may not be applied. At the final state
with appropriate cable forces, however, deformation against P’ can be assumed to be
small. Let P° denote the vector of nodal loads to the frame that are equivalent to N°.
The vector u of nodal displacements is obtained from

Ku=P'+ P° (1)

Let superscripts ( )X and { )V denote lower- and upper-bound values. The design
variables are N°, and an optimization problem is formulated as follows for minimizing a
performance index P(IN°) defined by the cable forces [5]:

Minimize P(N°) (2)
subject to uf <wu; <u/, (i=1,2,---,n) (3)
ol <o; <oV, (i=1,2,---,m) (4)
NE<SNE<NY, (i=1,2,---,m") (5)

where m and m® are the numbers of frame members and cables, respectively, and n is the
number of freedom of displacements.
The following four performance indices are considered in the examples:

Index 1 Sum of the cable forces: P, = ZE\;‘;‘Z
i=1

Index 2 Maximum cable force: P, = maxN].
E

Index 3 Difference between the maximum and minimum cable forces:
P; = maxN{ — min N,
i %

me
Index 4 Deviation of Nf from the target value Nf: Py = Z{: £ — NE)2
i=1

The optimal cable forces are found using a gradient-based optimization algorithm. In
order to reduce the error due to the assumption of infinitesimal deformation, the direction
of Nf is updated using the nodal locations after optimization, and NY is re-optimized.
Optimization is to be carried out several times, if necessary, before the nodal locations

converge.

4. OPTIMIZATION OF CONSTRUCTION ORDER
The optimal construction order is to be found based on the following two objective func-

tions:

e II.: Sum of jack forces actually used for cables and temporary supports.
s I, Maximum value of jack forces.

The jack force needed for tensioning a cable is equal to the force of the cable itself. Let
1y denote the vertical displacement of a node against unit vertical load at the node. The
distance to be raised by inserting a temporary support at the node is denoted by Au.
Then the jack force for the temporary support is evaluated by Au/ug.



Fig. 2: State transition for m® = 3.

4.1. Geometrically nonlinear analysis
In the process of inverse construction analysis, we should take into account the effect of
geometrical nonlinearity. A cable is considered as a truss member, and removal of a cable
is modeled as a process of decreasing its cross-sectional area to 0. The unstressed length
of a cable is calculated from N?, length at the final state, the elastic modulus and the
cross-sectional area so that Nf is equal to its optimal values obtained in the previous
section. The temporary support is also modeled as truss member with sufficiently large
cross-sectional area.

Let F denote the vector of internal nodal forces of the frame members. The equilibrium
equation for Py, F and N° is given in terms of the equilibrium matrix B and B° as

BF + B°N¢= P’ (6)

where IN° includes the axial forces of the truss members representing the temporary
supports.

The truss members representing cables and temporary supports are successively re-
moved or inserted in the inverse construction analysis. The equilibrium states are traced
by using the well-known Newton-Raphson type incremental iterative method. Note that
the geometrical stiffness is not considered for frames, because the linear stiffness of the
frame is sufficiently large.

4.2. Optimization by dynamic programming approach

The construction order can be defined by a permutation of the indices for cables and
temporary supports. In this sub-section, the temporary supports are not considered for
brevity. The simplest method for finding the globally optimal construction order is to
enumerate all the possible permutations. In this case, however, the number of steps of
nonlinear analysis is equal to m®!m°®, and the computational cost becomes very large if
n, m® and the number of temporary supports are very large. Therefore, the dynamic
programming approach is used.

Fig. 2 illustrates the state transition for m® = 3. Let I denote the list of cable numbers
that have not been removed. g; denotes the minimum cost for reaching the state defined
by I from the initial state. The cost for removing cable j from the state defined by 7
is denoted by dy;. In Fig. 2, e.g., the optimal path to the final state is obtained from

min(gq 2y + d1.2)3, 92,3} + di2,331, 913y + diazya)-



Consider an intermediate state S where several cables exist. According to the principle
of optimality of dynamic programming, the construction order after S should be the
optimal order to the final state assuming S as the initial state. The construction order
before S should also be optimal among the paths from the initial state to S. Based on this
principle, the number of steps H of the nonlinear analysis is reduced to E;ﬁg e Cr(me—
k); e.g., H is about 2.46 x 10° for m® = 15 while H is about 1.96 x 103 if the enumeration
method is used.

4.3. An approximate method based on heuristic measures.

The computational cost is still very large if the dynamic programming approach is applied
to a structure with many cables and frame members. Therefore, we propose an approxi-
mate method using heuristic measures for selecting a cable or a temporary support while
tracing the inverse construction process only once. Let R = {R;} denote the vector of
jack forces needed for removal of cables or insertion of temporary supports. .J denotes
the set of indices of the remaining cables and non-existent temporary supports.

The increment of R; due to removal of ith cable or insertion of ith temporary support
is denoted by &R;. The following measures are considered for selecting a cable to be
removed or a temporary support to be inserted, where «; and j; are weight coefficients:

Case 1 Minimize the maximum jack force at the next step:

min max [3;(R; + AR})] (7
€] jedg#i

Case 2 Consider the jack force actually used at the current step in addition to the per-

formance measure of Case 1:

min Lm&x {3;(R; + AR}) + i Bi R; }} (8)

ieJ eJ i
Case 3 Maximize the sum of reduction of the jack forces:
max [Z ﬁ;»l%} (9)
JEJ i

Note that Q\Ri should be replaced by R; if R; < AR‘
Case 4 Divide %he performance measure of Case 3 by the jack force actually used at the

/ B; R (10)

Note that we skip the cable or the temporary support with R; = 0.

current step:

;?Ea}x LZ J}Aﬁz

JETj#i

Since estimation of state variables after the construction step should be accurate, a re-
analysis method [7, 8] is used for estimating i\ﬁg The increment of the variables during
a construction step is denoted with A. The equilibrium equation after the step is written
as

B(F + AF) + (B + AB°)(N°+ AN®) = 0 (1)



which is rewritten by using (6) and BAF = KAu, B°AN® = (K°+K;)Au, AB°AN‘ =
AKAu as

(K + K°+ K& + AK®)Au = AP* (12)

where AP° corresponds to the direct increment of the nodal loads due to removal of a
cable or insertion of a temporary support. Au is obtained by using the reanalysis method
and AR; is calculated. Since the stiffness matrix is factorized only once at each step
of estimation, accurate increments are obtained within moderately small computational
cost.

5. OPTIMIZATION RESULTS

Optimal cable forces at the final state and the optimal construction order have been
found for a cable-supported roof-type frame as shown in Fig. 1, where a beam of 95 m
is supported by six cables connected to the mast or the ground and the displacements
in the z-direction of the nodes along the beam are constrained. The locations of the
selected modes are as shown in Fig. 1. The static loads for the beam is 40.0 kN/m. The
cross-sectional properties are as shown in Table 1, where A; is the cross-sectional area,
I;; and I5; are the second moment of areas, F; is the elastic modulus, and G; is the shear
modulus.

The cable forces at the final state are optimized considering four indices, where Nt =
100 kN, N = 2500kN, oV = —o¢¥ = 0.2kN/mm?, v/ = —uf = 200 mm except ul =
—100 mm for the vertical displacement of the beam. Optimization has been carried out
by DOT Ver. 5.0 [6] and the method of the sequential quadratic programming has been
used. Table 2 shows the optimal values of cable forces and performance indices. It has
been confirmed that each index has the minimum value if it is taken as the objective
function.

The construction order has been optimized from the optimal final state for Index 1.
The optimal and the worst-case construction orders obtained by the dynamic program-
ming approach are as shown in Table 3 for the case of minimizing I, which is the sum of

Table 1: Cross-sectional and material properties.

A; {mﬁ@} fli (mﬁf;} Iz; {mmé} E; {kl\f;mmg} (;1 {k};;mﬁlg}
beam | 1.600x10° | 2.763x10'° | 6.633x10° 210.00 81.00
mast | 3.657x10% | 1.721x10' | 1.721x 10! 210.00 81.00
cable | 5.84x10% 0.0 0.0 160.00 0.0

Table 2: Optimal cable forces (kN), performance indices Pj, P, P3 (kN) and Py (x10°
(kN)?) at the final state.

N: | N¢ | N | N [ NE] NE | B | B | Bs | By
Index 1 || 1107.4 | 2500.0 | 1658.1 | 511.9|499.9| 272.8 || 6550.2 | 2500.0 | 2227.2 | 3.731
Index 2 | 1689.9 | 1689.9 | 1307.6 | 911.7|490.9 | 1689.9 || 7779.9 | 1689.9 | 1199.0 | 1.317
Index 3 || 1703.1|1703.2 | 1441.1 | 1053.6 | 534.6 | 1701.2 || 8136.7 | 1703.2 | 1168.7 | 1.279
Index 4 || 1716.5 [ 1711.0 | 1141.6 | 1102.4 | 500.3 | 1207.8 || 7469.5 | 1716.5 | 1216.3 | 1.039




Table 3: Construction orders and sum of jack forces.

i, Construction order
Optimal 4514.8 (kN) | (B3)-B1-(C6,B2)-C1-(B4)-C2-(C4,C5)-C3
Worst-case | 14222.7 (kN) C5-C6-C3-C2-C1-B1-C4-B3-B2-B4
Case 1 80143 (kN) B2-C2-C1-B1-(C5,C6)-B3-C3-B4-(C4)
Case 2 55488 (kN) B2-(B3,B4)-C6-C5-C4-B1-C1-C2-C3
Case 3 4706.4 (kN) B1-C5-(C6,B2,B3,B4)-C1-C2-(C4)-C3
Case 4 5269.4 (kN) B1-C5-(C6,B2, B3, B4 -C2-C1-(C4)-C3

Table 4: A variation of cable forces (kN), reaction of temporary supports (kN) and dis-
placements (mm).

(a): Optimal construction order

Nl N | NS [ NS [ NI Ne | PP FR | FY | FP ]| 6z, | 6

Final |[1072.42491.4|1665.8 | 514.5 | 462.8 1 311.3 0.0 0.0 0.0] 0.0)-111.6210.2

S(B1) | 834.1/2307.1/1521.6/478.4/345.7| 0.0} 592.1 0.0 0.0] 0.0 5.04 133.6

S(C1) 0.0]2873.3 | 1405.7 | 486.5149.3| 0.0 805.1 0.0 0.0, 0.0 83 3.1

S5(C2) 0.0 00} 2153} 00] 0.0| 0.01017.111242.8/1030.6/418.8)] -1.9| 0.0

5(C3) 0.0 0.0 0.0} 0.0] 00| 0.0]1010.7|1261.6|1176.5{449.9] -1.8] 0.0

i

(b): Case 3

N | N¢ | Nf | Nf | NE| N FP | FY | FY | B} || 624 | o2

Final |1072.412401.4 | 1665.8 |514.51462.8 | 311.3 0.0 0.0 0.0, 0.0]-111.6/210.2

S(B1) || 834.1/2307.1/1521.6 [478.41345.7| 0.0] 592.1 0.0 0.0 0.0 5.01133.6

S(Cs5) | 729.5)2272.1]1530.0476.3] 0.0] 0.0} 670.0 0.0 0.0, 00 3.61146.0

5(C1) 0.012823.6 11416.3 485,00 0.0] 0.0} 829.0 0.0 0.0, 0.0 7.5 16.3

S(C2) 0.0 0.0] 2153; 00] 00| 0.0)1017.11242.8/1030.6 4188 -1.9| 0.0

S{C3)| 0.00] 0.00 0.0 0.00] 0.00] 0.00]1010.7|1261.6 |1176.5|449.9]] -18| 00

the jack forces. In Table 3, ‘Bi’ and “’'Ci¢’ indicate the numbers of temporary support and
cable, respectively, to be inserted and removed. The numbers in brackets indicate that
the cable is already slack or the node is already above the temporary support, and no
jack force is needed at the corresponding step. It is observed from Table 3 that I, can be
reduced by inserting the temporary supports at the early stage of the inverse construction
process. Early removal of the cables connected to the nodes near the supports also leads
to reduction of II,. Note that the total jack forces including those for the temporary
supports is 4514.8 kN which is about 69% of the sum of the cable forces at the final state.

The approximate solutions based on heuristic measures are also listed in Table 3. It
should be noted from Table 3 that an almost optimal solution that minimizes II, has
been obtained in Case 3. The variation of the cable forces, reactions F! at the temporary
supports, and the vertical displacements éz, and 6z, of nodes a and b, as defined in Fig. 1,
are listed in Table 4. In Table 4, *S({Bi)’ or *S(Ci)’ indicate the state immediately after
ith temporary support and cable, respectively, are inserted and removed. Note that the



largest deformation is observed at the final state, and the deformation during construction
is sufficiently small.

6. CONCLUSIONS

Two methods have been presented for optimization of prestressing order of cable-supported
frames by inversely tracing the construction process from the final state with optimal ca-
ble forces. The cables and temporary supports are modeled as truss members, and the
cross-sectional areas of the truss members are adjusted to represent the removal and in-
sertion of cables and temporary supports, respectively, during the inverse construction
analysis.

The globally optimal prestressing order is found by the dynamic programming ap-
proach. An approximate method is also presented based on a heuristic measure for select-
ing the cable to be removed or the temporary support to be inserted at each step while
tracing the inverse construction process only once. It has been shown in the example of a
cable-supported roof-type frame that the order of removal of cables and insertion of tem-
porary supports can be successfully optimized by the dynamic programming approach. A
nearly optimal construction order that minimizes the sum of jack forces actually used can
be obtained by using the approximate method within a fraction of computational cost
that is needed for the dynamic programming approach.
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