TPO52 IASS Symposium 2001, Nagoya

LARGE DEFLECTION ANALYSIS OF CABLE NETWORKS
BY SECOND-ORDER CONE PROGRAM

Yoshihiro Kanno and M&kam C)hmkl

Department of Architectu
Kyoto Univ

ABSTRACT

A t’xwt md is )r%ﬂ}tﬁd fm' e»thhrmm

able networks considering ge-
Programming (SOCP)
nimization problem of total po-
Mu;,m ation. No assumption of stress
¢ no process of trial-and-error is in-
wmHm(iwmimv software based on the

' Numerical

1. INTRODUCTION
Various papers have been publishec CerTing
works considering geometrical nonlinearity [1 4}
incremental method based on the tangent
itly dealt with the fact that cables '
which is referred to as tai'u,-z stress

,‘ [)l?()p()“’s{"d the
lmww«‘t have explic-
: g compressional forces,
wavior.  Panagiotopoulos [5] formulated
imal incremental displacements. The
ed as one-dimensional continuum has

§ ne tangent stiffness, the stress-unilateral behavior
is modeled by absence of stiffuess of slackening members. An assumption, however, is
required whether each member will be in tensile or slackening state at the next step
of increment. The formulation in [5 Id make assumpti 5 state to

1ons on st
carry out the analysis. Since state may conflict with the obtained

2 *x'amt;m mﬂhoda h Se(

results from displacement increments, the mmlwmmi ~error process which is similar to that
of elastoplastic analysis should be carried out m/ each incr «ammmm atmp. Sm::l:t f:\ﬁ&?lll’.]‘l]ﬁ)ti(])lﬁl
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m«mml ers are slacke

Recently
programming
Mallett an

: est in methods and theories of nonlinear

0 apply to equilibrium analysis of structures [7] and to contact problems [8].
schmit [9] presented a method for equilibrinm analys s where a
nonlines gramming based on energy principle is solved. To authors’ knowledge, all
the studies except Cannarozzi [6] are based on small deflection or infinitesimal increments.
Iz this paper, a met, Imd is proposed for equilibrium shape analysis of cable networks

: ) > Programming (SOCP) [10]. SOC 5‘4 a Convex I zlhzmla,timl
mirxg 'rmtmmng., lumar programining, convex quadratic )
8 tufn“m H 1 1‘"’}

—

wsidered. QOur



nination of stress
finess matrix becomes
his purpose, an sSOCP

concern is m alﬁvekﬂp a meﬂ;wd A,p )Iu ﬂ‘)hﬁ” wven to the case

; “imnu}a.ted g0 as to have ta}
blem of total potential ene |

s which connect pin
ol mal forces.

5. z € RV and F € RV’ denote
not supported and the corresponding

.jf,:n,m/z:s a,.l;t,d 51 1.);;)01“’(,&, and are m,,;‘t; oa)
Let N¥ denote the number of freed
the vectors of coordinates of internal ne

1 length 1Y and cross-

yrdinates of the 911;:7;";«")1@;« (‘mwm} lr‘md f ini (
e he ith member. N™

sectional area A; of the ith membe
denotes the nmunber of members,

gmnmm+wwdﬁ wmu&qum. (1)

- P d . v .
Here, B; € R¥N" and b? € R* are constant matrix and vector, respectively.
2.1. Linear elastic material
For a linear elastic material, the axial force N; of the ith member is written as

kici o
(2)

where k; = EA;/l}, and E is the elastic modulus. Then the strain energy w; = w;( ci) is
defined by

e / N, i (ﬁﬁﬂfrg )lﬁim (3)
oS0

From (1)-(3), the problem of minimum total potential energy is formulated as

N T “

. / ral
(IT) :  Minimize Z wi — f @

Loy

;Zk,(f (0 < ¢y), (4)
0 (e < 0).
KWMWW+Wwwymem~WM%

The solution (&, wy, ¢;) of (II) coincides with the nodal coordinates, the st
member elongation at the equilibrinim configuration, respectively.

Notice here that (II) is a nonconvex optimization problem, and definition of w; de-
pends on the value of ¢;. Therefore it is not recommended to solve (II) by an algorithm
of nonli rrogramming. This motivates us to investigate the following (P) which is
classified as an SOCP problem:

subject to w; =

et

N!’N
) = Z ~kyy? ~ j" x (5)
subject to 1y > ]]B x4+ b)) -1 (i=1,2--,N™).
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Figure 1: Bi-linear constitutive law. Figure 2: Non-linear constitutive law.

Let (z*,y) denote a solution to (P). It follows from the convexit

, v of @ that x* is also
an optimizer of (IT). In this paper, we solve (P) to obtain the equilibrium shape.

2.2. Bi-linear material
Consider a bi-linear elastic material defined as

Af”( i — &) + kit

Ni = ¢ ki (6)

definition of w; in (IT) should be replaced with

where k' > 0. The relation between N; and ¢; is as illustrated in Fig. 1. Then the
"1 , 1
"]il ( ci — 6)° + k(e — & )+ 2

wi = ;kjjﬁ? (() <y (?g;), (7)

;u; (‘m*;j ((‘, f: € ),

In this case, (II) is equivalent to the following (P):

N kel

(P): Minimize @ = Z Gil Yeis Ypi) — f T‘w
s 1 N ( 2";)
subject to  (Yai, ypi) € Ci, L
Yoi + Ypi 2 HﬂVW + b;)” - l?a <? =1,2,---,N™).

Here,

ice again that (P) is an SOCP problem which is convex and has no partition of
i (7) in the problem definition,

nstitutive law (6) is often used for elastoplastic analysis. Although elastoplastic
behavior of structures is path-dependent, the strain energy is a function of ¢; under
; 1 such that no member is unloaded at any stage of loading history. In this case,




(b) Model (I1) (c) Model (I11)

Figure 3: Initial solution (A).

the equilibrium shape can be obtaine
and yg; coincide with elastic and |

1 as the solution to (P), and optimal value of y,,
stic components of elongation, respectively.

2.3. Stiffness reduction under small M()ngdﬂtﬂl
When the axial force of a cable member is
smaller than that determined from t
may be caused by two characteristics of the
becomes loose; (ii) deflection of ce
quadratic relation is assumed for a

all, the stiffness appears to be
. material. This phenomenon
cable member; i.e. (i) the strand cable
le member due to its own weight. The following
all re ated in Fig, 2

' éf"f%";)ﬁ (9)

if is determined such that N; is continuously differentiable at ¢; = &. Then the

In a method based on the tan stiffness matrix, the nonlinear constitutive law such
as (9) must be linearized at each step of analysis. The problem (P), however, can be solved
by using the interior-point method without any expansion or approximation of (9).

3. EXAMPLES

Equilibrinm shapes are computed for cable networks with various sizes. Computation
has been carried out on COMPAQ Alpha (CPU 21264 500MHz with 1GB memory).
Self-equilibrium shapes with f = 0 will be found in all the examples except those of
elastoplastic analysis in Section 3.4.

Consider three cable networks as mhmwm in Fig. 3 which are referred to as initial
configurations (A) of Models (I), ( IT) and (III). The elastic modulus is E = 205.8 GPa
and cross-sectional area is 10 cm for each member. Each cable network projected to
the h I plane makes a grid with 1 m x I m squares. The (z,y)-axes are defined
along tl 1, where the case of Model (I11) is as shown in Fig, 4. Then the z-coordinate
of the nodes rJH" given as 2z = (2% — y*)/a, where o = 6, 11 and 13 (m), respectively,
for Models (1), (II) and (III). The two ends of all the cables are supported. The initial
unstr | length of each member is 99% of the member length of (A). Note that the

] ““ir:fini'f, (A) is close to the self-equilibrium configuration of each model. All the
i are in tension at both (A) a«ud the equilibrium state. Initial solutions (B)




Figure 4: Coordinates (Model (I11)). Figure 5: Initial solution (B) of Model (I1I).

Table 1: Comparison of performances of IPM (P), IPM (I1) and NR.

algorithm model steps | CPU time (sec.) ¢
# n total ave, | (x9.8 kN -m)
(I) 195 1 11 (.23 0.021 | 2.27560 = 10°
IPM (P) | (II) 740 | 14 1.42 0.101 | 8.35266 x 10*

(II1) 1066 | 16 | 2.46 0.164 | 1.18472 x 10*
(M) 135 22 | 050 0.023 | 2.27560  10°
IPM (IT) | (II) 520 | 22 | 244  0.111 | 8.35266 x 103
(II) 744 | 22 | 3.81 0.173 | 1.18472 x 104
i) 75 10 | 0.28 0.014 | 227560 % 10°
NR (I  300| 22 | 471 0.214 | 8.35266 x 103
(D) 432 | 22 | 20.31 0.923 | 1.18472 x 10

are also defined with z = 'f’v/’Z')“’ -y /o for three models. The configuration (B) of
Model (II1) is as shown in Fig. 5, w}wu oL e dotted members are in tension.
Equilibrium shapes are computed by the following three methods:
IPM (P) : solve (P) by 1:1&11:{1;;1:; e Int im I'Mim Mﬁﬂl(m
IPM (IT) :  solve (II) by using the
NR : Newton-Raphson n
NUOPT [13] is used for IPM (P) and II’M (IT), which is an implementation of the
interior-point method for nonlinear programming. NR is the iterative method to update
the nodal coordinates by using the tangent stiffness matrix at the current nodal coordi-
nates and the residual nodal for . Notice here that IPM (P) and NR require the
assumptions on the stress states of the members at each step of analysis.

3.1. Self-equilibrium shape analysis with the nonlinear constitutive law
Self-equilibrinm shapes are found for Models (I)-(I1I) from initial configurations (A). All
members obey the constitutive law (9) where & = 7.0 x ‘10”‘"“‘59,

The results by IPM (P), IPM (II) and NR are as listed in Table 1. The obtained
values of total potential energy @ of three methods agree within 6 digits, which implies
t,lmt, thw olutions satisfy equilibrium conditions. The number of independent variables
10d is denoted by n, where the formulation (P) requires the largest number
. Average CPU time means the computational time for each step.

It may iw observed from Table 1 that the CPU time of IPM (I”) is the smallest. The
CPU time of IPM (P) and IPM (II) is of order between n and n?, whereas that of NR is
of order between n? and n. IPM (P) is cheaper than IPM (IT) I‘”»m;*nu,,,, 2 (i) the process of
IPM (IT) to investigate the stress state of each member requir ditional CPU time at
each step; (ii) the convexity of (P) causes the mwd convergence. Although the number

of variables of (P) is more than that of (I1), it is shown that (P) has advantage over (II).




Table 2: Comparison of performances between initial solutions (A) and (B).

algorithin model steps CPU ti . |2
# n | (A) | (B) | total (A) ave.(A) B) ave.(B) | (x9.8kN . m)
(I) 135 11 | 15 0.21 0.019 0.22  0.015 | 2.79779 x 10°
IPM (P) | (II) 520 | 11 15 (.90 0.082 0.98 0.065 | 1.02694 x 104
(ITT) 744 | 11 | 23 1.42 0.129 2.26  0.098 | 1.45659 x 10*
(I) 135| 11 | 15 0.24 0.022 0.23 0.015 | 2.79779 x 10°
IPM (IT) | (IT) 520 | 11 | 15 0.93 0.082 1.05  0.070 | 1.02694 x 10*
(ITT) 744 | 15 | 31 2.10 00.140 3.28  0.106 | 1.45659 x 10
(I) ™ 22 | * 0.26 0.012 * 1 2.79779 x 10°
NR (If) 3001 20 | * 4.24 0.212 * *11.02694 x 104
(IIT) 432 | 9 * 7.40 0.820 * * 1 1.45659 x 10

* algorithm cannot be applied.

Table 3: Comparison of results of Model (111").

algorithm model CPU time (sec.) )
constitutive law " total ave. | (x9.8 kN - m)
IPM (P) (2) T44 | 45 5.37 0.120 | 3.11132 x 10°
IPM (II) (2) 44 | 51 6.37 0.125 | 3.11132 x 10?
NR (2) 432 | ** o 0.873 ok
IPM (P) (9) 1066 | 34 5.26 0.155 | 1.16644 x 10*
IPM (IT) (9) 744 | ** ok 0.978 ok
NR (9) 432 | ** ok 1.122 o

¥ did not converge within 1000 steps.

3.2, Comparison of performances from different initial solutions

Dependence of performances of three methods on initial solutions are investigated by
comparing performances using the initial solutions (A) and (B). Suppose the constitutive
law is given by (2).

The results are as listed in T
and IPM (IT) converge to the
formance in view of computational ¢
than that of (A), although (B) is |
of IPM (P) in view of initial solutions

' /9‘ For all the cases, it is observed that both IPM (P)

brium configurations, and IPM (P) has the best per-
2 computational cost for (B) is not very larger
renit from the equilibrivm shape. Robustness
]m been verified with this result.

NR cannot be

applied to (B) because the tangent stiffness matrix at (B) is singular.

3.3. Initial cunﬁguration with slackening members

Model (Hl) is defined so that the lmtml unstressed length of each member shown in
blank line in Fig. 6 is equal to 102% of the length at the configuration (A) of model (III).
Therefore, those members are s ”lmkemu g at the configuration (A). All the members are
1«"m at Hw vthbnmu c uration. Although the configuration (A) contains
g 1 Tness rmmm is not singular at (A). The results using
« (2) and (9) are as listed in Table 3.

Cannot fm(l mlutmm for both ce ‘, its trial-and-error process leads to
08¢ 1llmmu of solutions. Note that the trmg@wmml stiffness matrix is not singular at each
step of NR. IPM (I1) has not converged for the case of (9) while IPM (P) did not have
any difficulty in both cases.

3.4. Elastoplastic analysis

Vertical loads of 4900 kN are applied at the center node of Model (1), and at the four nodes
around the center of Models (I1) and (I11). The loaded nodes of Model (I11) are as shown
in Fig. 7 with the filled circles. Suppose the members obey elastoplastic constitutive law
(6), where & = 0.031? and k' = 0.1k;.




Table 4: Comparison of results of elastoplastic analysis.
algorithm model steps | CPU time (sec, &
# n total ave, | (x9.8 kN -m)
(I) 195 10 (.44 (.044 4.92416
IPM (P} | (IT) 740 10 1.39 (.139 | —2.09518 x 10*
(I11) 1056 10 2.06 0.206 | 1.09141 = 10%
1
|

() 135 ] 10 | 058 0.058 4.92416
IPM (IT) | (I} 520 | 11 1.62 0.147 | ~2.09518 » 10°
(Iy 774 | 11 217 0.197 | 1.09141 x 10

§)) 75| 25 0.32 0.013 92416
NR (Iry 300 | 32 6.92 0.194 | —2.09518 x 10°

(III) 432 | 34 | 31.66 0.931 | 1.09141 x 102

! 1
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Ll
Figure 6: Slackening members of the initial Figure 7: Plastic members
solution (Model (III%)). BUTE (¢ TIASUC MEmbers.

The results by three methods are as
members are as shown in blank lines in |
performance of IPM (P) is superior to the

isted in Table 4. For Model (I1I), the plastic
. 7. It may be observed from Table 4 that the
v of the others in view of CPU time.

3.5. Unstable equilibrium shdp@ analysis
The initial unstressed length of ¢ ber shown in blank line in Fig. 8 (a) is modified
to 102% of the original length. These members are slackening at (A).

The solution obtained by IPM (P) is as shown in Fig. 8 (b). Note “haﬁat‘ the equilibrium
configuration is not unique in 1“1’15% ple. It can be seen from Fig. 8 (b) that four
mmim mmmc{ t-ml er are uuaml, e. ore NR cannot find any m:»hm n because of the

,,,, s matrix. There exists, however, no difficulty in applying
L[’M ( }?'"‘) t;u fm.(l one uf t.lw aqmi brium configurations.

4. CONCLUSIONS

An SOCP formulation which gives the same optimizer as that of the problem of minimum
total potential energy for cable networks has been presented, and Wuc,zmlg brium shape has
been obtained as a solution of the SOCP by using an interior-point method. In the
proposed formulation, the material as well as the geometrical nonlinearity is considered.
umption on stress state is included, the proposed algorithm does not involve
of trial-and-error.

has been shown in the (»xmnplmtmt the computational cost of the proposed method
w mmH compared with those of simple minimization of the total potential energy and the
‘ ‘ fectiveness of this method
; of unstable structures or solutions with many members that has small axial
‘*r w} ere the existing two methods have failed to obtain solutions.

Since no as
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(a) Initial solution. (b) Equilibrium state.

Figure 8 Slackening members,

In addition to these advantages, SC / ectively by using well-developed
softwares, therefore our task is only to input the g cal and material properties of
cable networks and no effort is required to develop any analysis softwares.
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