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ABSTRACT
A method is presented for determination of cutting patterns of membrane structures con-
sidering viscoelasticity of material. A constitutive law is proposed to represent viscoelastic
behavior of material in the range around the target stress level. By using the proposed
constitutive law, relaxation behavior of a membrane structure is estimated without time-
history analysis, and the initial stress immediately after construction is determined to
obtain stresses close to the target value at the steady state when relaxation is terminated.

The effectiveness of the proposed method is discussed in the example.

1. INTRODUCTION
In the construction process of a membrane structure, the curved surface is formed by
stretching pieces of plane cutting sheets and connecting them to a frame. However,
because of viscosity of material, prestresses are reduced after construction and equilibrium
shape deforms due to well-known phenomenon called relaxation. As prestre

es are given
so that the surface retains stability and stiffness against external loads, deformation due
to external loads may increase after relaxation.

Minami et al.' developed an experimental method for finding the stress-strain relation
after relaxation. They determined bi-axial stress-strain curves based on the results of
experiments and proposed a method for relaxation analysis using the obtained stress-
strain curves. Kato et al.? proposed a visco-elastoplastic constitutive law based on a fabric
lattice model and carried out relaxation analysis considering the construction process. The
constitutive law, however, has many parameters to be determined.

Tsubota and Yoshida® optimized cutting patterns by repeating the process of shape
analysis and modification of cutting patterns. Ohsaki et al.*® proposed a method for

g

optimizing equilibrium shape and stresses under the condition that equilibrium shape
is reduce

d to plane sheets after releasing the stresses. Uetani et al.” determined optimal




E. K; /
Ey '

I
1

ﬂf "/ ’y "t fd
T f K ,//;:;J = Ey(€3, — €w)
0 :f ‘ Efﬂ

€

Fig. 1: An orthotropic 3-parameter model.  Fig. 2: Approximate s-gtrain relation.

equilibrium shape and cutting patterns simultaneously by solving linearized forms of equi-

librium equations and optimality conditions. In these methods, however, the membrane
is modeled as an orthotropic elastic mater

s

al, and viscosity is not considered.

In this paper, a constitutive law is proposed for representing viscoelastic behavior

of material in the range around the target stress level. The material parameters are
ts. The elastic stress-strain relation is then

obtained from the proposed constitutive law at the steady state when relaxation behavior

obtained from bi-axial tests of membrane shee

is terminated. A cutting pattern optimization method is also presented for minimizing
the stress deviation at the steady state.

2, CONSTITUTIVE LAW OF MEMBRANE MATERIAL

In this section, a viscoelastic law of the membrane is proposed for modeling the material
properties. We propose the model as shown in Fig. 1 which is the simplest model that
can represent the elastic and viscc

slastic behavior. In the following, the part of parallel
connected dashpot and spring is called viscous part, and the remaining spring is called

parts, respectively.

The stress and strain in warp direction are denoted by ¢, and €, respectively. The
elastic modulus of elastic part, that of viscous part and viscous modulus are denoted by
Ey, K, and n,, respectively, as shown in Fig. 1. In fill (weft) direction, oy, €, Ey, Ky
and 1)y are defined similarly. The shear stress, shear strain and shear modulus are denoted
by Twp, Yws and E,p, respectively.

2.1 Elastic law of the membrane

The elastic law is derived by restricting deformations of the dashpots of the model in Fig. 1.
Although stress-strain relation of the membrane is generally modeled by a nonlinear curve
as shown in Fig. 2, the membrane is modeled here as a linear orthotropic material®.

The |

linearized relation and Poisson’s ratio are determined for appro:

mating stress-strain
relations in the range around the target stress as shown in Fig. 2.

It is assumed that elastic deformations in the warp and fill directions influence each
other through Poisson’s ratio. Let €, be defined as shown in Fig. 2. €, is given similarly.
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Fig. 3: Elastic stress-strain relations.

The stress-strain relations under bi-axial loading are written as

" ‘
€ = pf”? ~ g et E (1)

where vy and v, are Poisson’s ratios, €, = €, — vsé; and €p = €p — Vyby. Ty is assumed
to be proportional to 7, as

Ty p = wai Y f (2)

Relation between the stress vector {of, Tfy Tws }T of elastic part and the strain

vector €° = { €}, €7, s }* of elastic part is derived from (1) and (2) as
ot = l)(éﬁe ,,,,,, 6?) (3)

where € = { &,, €, 0}" and D is the constitutive matrix determined from (1) and (2).
E., .E/f, v and 1, are to be obtained from the bi-axial cyclic loading test®. €, and
€7 are determined so as to minimize the sum of squares of errors between the test results
and the values calculated from (3). The test results have been obtained from the case
where the ratio between the warp stress and the fill stress, which is simply called stress
ratio, is 1 : 1. Only the data for the stress range 2.50 - 5.00 kN/m in the third, fourth
and fifth loading process have been used.
hown in Figs. 3 (a), (b), where dots are experimental
results, and solid lines are the results by (3). It may be observed from Figs. 3 (a), (b)
that the proposed elastic law can rr*prmmm the elastic stress-strain relation within good
accuracy in the target stress range (2.50 - 5.00 kN /m).

The stress-strain relations are as s

2.2 Viscoelastic law of the membrane
Let () denote differentiation with respect to time. By differentiating (1) with respect to
time and by setting €, = €; = 0, € is derived as

. 1., ve o,
= g% g, (4)
wl gy »



Because a spring and a dashpot are connected in parallel in the viscous part, the warp
58 oy, is represented as the sum of stresses of the spring and dashpot. Since the
deformations in warp and fill directions are assumed to be independent at the viscous

part, the following equation is derived:

&)

it

m """"" = €0 ur + ’Hn‘:w (5)

Because the total strain €, in warp direction is the sum of €}, and €}, (e, = €, + €,), (5)
is rewritten from (1) as

1 £ [’& it

oy = — Ty — - (€ — €5)
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}:ﬂl’“(}ﬂl €y = €y, t+ €, the total strain velocity é, in warp direction is given as the sum of

» and €. Since the elastic part and viscous part are connected serially, of, = o), = 0y,

Ql?
Hence, the following relation is derived from (4) and (6)

1 E,L, + K Cw vy Ky, 1., wv.. Ky, .
€ g T e (Fqgy T ——" Ty B e A L4 y = € 7
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¢s is given similarly. Since viscosity is not considered in the shear deformation, the relation
between 7,5 and ¥, is written from (2) as

7'7:' E wa)wj (8)

Eqns. (7) and (8) are rewritten simply hy using the stress vector & = { oy, oy, Ty}
and the strain vector € = { €, €7, Ty }' as

Go+ D 'é¢=H(e—é€) +é (9)

where G and H are the constitutive matrix obtained from (7) and (8).

In the following, material parameters in (9) are obtained from bi-axial relaxation test
which has been carried out in Ref. 8. Because E,, Ey, vy and v, are already given, only
K.y, nw, Ky and n; should be determined here. Material parameters are defined so as to
minimize the sum of squares of errors of the stresses calculated by time-history analysis
from the test results. Due to loosening of the yarn, a rapid relaxation is usually observed
immediately after stretching the membrane. In a practical situation, however, the mem-
brane sheets are pre-stretched to remove the looseness of yarn. Hence, the deformation
within an hour after loading is neglected. The time-history analysis begins after an hour
from loading and the stress at the time is regarded as the initial stress of the analysis.
Since the strain is fixed in the relaxation test, the strain is calculated from (3) and the
initial st

by letting é, = é; = 0. The increment of time is 0.5 hour.
The material parameters that minimize the error are obtained by the quasi-Newton
method. The sensitivity coefficients is calculated by the finite difference method. The
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Fig. 4: Results by relaxation tests and analyses.
results by experiment and analysis using the parameters estimated from the data of 1 : 1,

2: land1: 2 are as shown in dots and solid curves, respectively, in Figs. 4 (a), (b). It is
observed from Figs. 4 (a), (b) that the propc

law can represent relaxation

behavior within good accuracy. It has been confirmed that the errors of stresses for the

stress ratios 2 : 1 and 1 : 2 are sufficiently small, even if the parameters are estimated

from the data of only 1 : 1.

3. CUTTING PATTERN DESIGN

A method for cutting pattern design is presented to obtain stresses close to the target
values at the steady state when relaxation is terminated. Reduction of stresses due to
relaxation is estimated by using the propc

d constitutive equations, and the target stress

immediately after construction, which is simply called
es at the steady state close to the target values.

wd

as the initial target stress, is deter-

mined so as to realize the stres

The stress-strain relation at the steady state is derived by removing the dashpots from
the model of Fig. 1, because the stress velocity vanishes. Therefore, relation between o
and € at the steady state is written as

ce—e=D;'a (10)

where D, is the constitutive matrix obtained from (2), (9) and & = é = 0
If the membrane structure is discretized by triangular finite elements with uniform
stresses, the initial target stress is determined by the following process:

steady state.

D2 Carry out equilibrium shape analysis and find the nodal coordinates of all the nodes
on the equilibrium surface satisfving o = &.

D3 Calculate strain vector € of all the elements by using (10); i.e. &= €+ D; .

D4 Remove the deformation corresponding to € from the triangular elements on the equi-
librium surface and find the unstressed triangles that do not sat
conditions between the elements.

compatibility



D5 Connect the unstressed triangles and carry out nonlinear elastic analysis by stretching
them to the boundary to find the stress vector & of all the elements which are taken

as the initial target stresses for cutting pattern design.

In the proposed method, it is not necessary to carry out time history analysis, because
stress-strain relation at the steady state is simply given as (10). Moreover, the changes

the
of equilibrium shape due to relaxation is incorporated. Hence, if stresses immediately after
construction are equal to o, st

after relaxation converge

Note that the proposed method does not depend on method for the cutting pattern de-
sign. The target stress, however, should be in the range where accuracy of the constitutive
law is guaranteed.

4. EXAMPLE
Consider a frame-supported membrane as shown in Figs. 5 (a), (b), where the boundary
nodes b, ¢, d and e make a square with W = 9.0 m, and the heig

it of the triangle abe with

ab = @¢ is 1.2 m. In Fig. 5 (b), solid lines are boundary 1

yeams, and dotted curves are

cutting curves. Material properties are as listed in Table 1.

The target values (kN/m) for o, oy and 7,y at steady state are 3.0, 3.0 and 0.0,
respectively. The method in Ref. 6 is used for cutting pattern design. Considering sym-
metry of the membrane, cutting pattern design and relaxation analysis are carried out

for only a half of the surface. Two cases of

he initial target stresses are considered. In

S

Case A, & is determined by the algorithm proposed in the previous section. In Case B,

the target stress at steady state is directly given for o.

.....

e
-~
—

(a): Finite element mesh. (b): Boundary shape and cutting curves.

Fig. 5: A frame-supported membrane.

Table 1: Material properties.

E, | 992x10° kN/m Ep | 313 %107 kN/m

vy 4.20 % 1072 vy | 130 % 107

bw | 7.22% 1073 ér | 216% 1072

Ko 4.31 x 10*  kN/m Ky | 1.21x10% kN/m

T 4.66 x 10*  kN-day/m || ny | 1.14x 10" kN-day/m
Eyp | 1.65x 10 kN/m




(a): Case A (b): Case B

Fig. 6: Cutting patterns.

Table 2: Results of relaxation analysis.

(a): Immediately after construction.

Case A nse B
Stress deviation ((kN/m)?) 175.053 17.489
Stress (kN/m) s ay Tuf o ay Tuf
Target value 3.000 | 3.000 | 0000 3.000 | 3.000| 0000
Mean value 4.004 | 4130 | 0025 | 3172 | 3.266 | 0.025
Maximum value 4461 | 5123 | 0.886 | 3.622 | 4.240 | 0.870
Minimum value 3.430 | 3.840 | ~0.768 | 2,609 | 2.982 | —0.759
Standard deviation 0.267 | 0160 | 0216 | 0.264 | 0167 | 0212

(b): After 10 days from construction.
Clase: A Case B
Stress deviation ((kN/m)*) 14.616 39.663
Stress (kN /m) Ow or Tuf T oy Twf
Target value 3.000 3.000 (1L.ODG 3.000 3.000 0.000
Mean value 3.1561 3.251 0.024 2.497 2.571 0.023
Maximum value 3.555 4.043 {1,866 2.805 3348 | 0.847
Minimum value 2.655 3.004 | ~0.736 4,011 2.329 | —0.725
Standard deviation 0.234 0.136 0.207 (.231 0.134 | 0.204

After obtaining the cutting patterns, elastic analysis and relaxation analysis are to
be carried out. Relaxation analysis is terminated after 10 days from construction when
relaxation behavior of the membrane can be assumed to be almost stationary.

Figs. 6 (a), (b) show the obtained cutting patterns for Cases A and B. The results of
relaxation analysis are as shown in Tables 2 (a), (b), where stress deviation is the sum of
squares of errors from the target stress. It is observed from Table 2 (a) that the stress
deviation is small for Case B immediately after construction. The stresses at steady state
for Case B, however, are about 80 % of the target values due to relaxation. On the other
hand, stresses for Case A are sufficiently close to the target values at the steady state.
It may be observed from these results that the cutting patterns can be successfully

generated by using proposed method to obtain stresses close to the target values at the
steady state.



5. CONCLUSIONS

A constitutive law for the membrane has been proposed based on a 3-parameter or-
thotropic model. Although the number of material parameters is small, the proposed
constitutive law has good accuracy in the target range of stresses. By comparing numer-
ical and experimental results, it has beer wi that the proposed constitutive law can
accurately represent the elastic and vi ;

haviors.
The stress-strain relation at the s

ady state has 1
constitutive law by removing the dashpots
shape and stresses at steady state can ez

derived from the proposed
By using the derived relation, equilibrium
ily be found without time-history analysis. A
method has also been presented for determining the initial target stresses for cutting
pattern design so as to minimize the stress deviation at the steady state.

In the example, the proposed method has been applied to a frame-supported membrane
structure modeled by the triangular finite elements with uniform stresses. It has been
shown that the cutting patterns are easily found for realizing stresses at the steady state
close to the target values.
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