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1. INTRODUCTION

Early on in the design of structural systems, it is often desired to find the general layout of the
system that most naturally and efficiently supports the anticipated design loads. This is sometimes
done by optimizing the overall shape of the structural system as well as the connectivity (or
topology) of structural elements comprising the structure. Variable topology shape optimization
is much more general than fixed topology shape optimization in that it leads modifications to
the connectedness (or “topology”) of structural elements. It is performed early in the design of
structural systems, the point at which there is the greatest amount of freedom, to find potentially
optimal starting “concept designs” (Figure 1). There are two broad classes of techniques which can
be applied to optimize the shape and topology of a structural system early on in the design process:

1. Discrete optimization of the structural system;

2. Continuum optimization of the structural system.

In the discrete optimization methods, the structure is generally modeled with discrete truss and/or
beam/column elements, whereas in continuum methods, the structure is modeled as a continuum.
Both methods have undergone extensive research and development in the past two decades, and both
have their own strengths and weaknesses. In the following sections, both discrete and continuum
structural shape/topology optimization methods are reviewed separately and then compared.

The history of shape and topology optimization of framed structures can be classified into three
periods:

1. The initial period during which Michell (1904) and Maxwell (1894) made their pioneering
studies in the field; Although the study by Michell is important in view of theoretical back-
ground, the techniques apply only to limited types of discrete structures and constraints (Hemp
1973). Following these initial works, the field of structural topology optimization fell relatively
dormant for many decades.

2. A second period occured during the 1960’s and 1970’s in which time interest in structural
optimization was re-kindled by the initial developments of high-speed computers. During this
period, many important theoretical results for general optimization methods and numerical
implementations were first presented, and difficulties in structural topology optimization were
given extensive attention. In addition, methods for discrete shape/topology optimization were
exercized on very small test problems due to computing limitations.

3. A third period during the 1980’s and 1990’s has been characterized by extremely dramatic
growth in computing technologies. While theoretical work on structural topology optimization
has continued, numerical techniques for structural topology optimization have been further
refined, developed, and applied to larger-scale, more realistic structures. During this third
period, while advances in discrete topology optimization continued, novel continuum structural
topology optimization methods were also introduced and developed quite extensively.
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2. DISCRETE STRUCTURAL TOPOLOGY OPTIMIZATION

The initial design of skeletal structures such as trusses and frames can be broken down into
the selection of nodal (or joint) locations, and design of the connectivity structural elements. The
former process is referred to as geometry optimization or configuration optimization, and the latter is
called topology optimization. Both processes sometimes include sizing optimization or traditional
optimum design where the cross-sectional properties are optimized. Simultaneous optimization
of topology and geometry may be referred to as layout optimization, or simply configuration
optimization.

This review section on discrete structural topology optimization concentrates primarily on the
numerical methods developed in the third period described above. The theoretical works such as
explicit optimality criteria approach and the method based on so called grillage are summarized
in the review papers by Kirsch (1989b) and books such as Rozvany (1976), Rozvany (1989) and
Rozvany (1997). Since rigidly-jointed frames and pin-jointed trusses are modeled in a similar
formulations of finite element method, trusses are mainly considered here. Optimizing topologies
of trusses is more difficult than optimizing frames because of instability at the joints.

In the widely used numerical approach of topology optimization, unnecessary members are
removed from highly connected ground structure while the nodal locations are fixed (Kirsch 1989b,
Topping 1992). Many methods have been presented based on the ground structure approach, and
finding practically useful solutions seems to be a matter of computational capacity. The main
research topics in this field include the difficulties for the case with constraints on stresses, local
buckling and frequency. Development of efficient computational algorithms for optimizing large
scale trusses is also an important subject.

Geometry optimization of framed structures, on the other hand, seems to be rather straight-
forward. The nodal coordinates are considered as continuous design variable, and the optimal
solutions may be found by using appropriate methods of mathematical programming. In this
process, side constraints are usually given for the nodal coordinates to prevent existence of short
members, or intersection of members. Therefore, topology cannot be optimized, and simultaneous
optimization of topology and geometry is a very difficult problem that cannot be a simple extension
of either topology optimization or geometry optimization.

P

Figure 1. A highly connected ground structure.

2



Discrete and Continuum Structural Topology Optimization M. Ohsaki and C.C. Swan

2.1 Topology Optimization Problem

Consider a problem of finding optimal connectivity of the nodes from a set of existable nodes
and members under constraints on responses for specified loading conditions. The structure with
all the candidate nodes and members is called ground structure. A ground structure includes many
nodes and members as illustrated in Figure 1. The approach that removes unnecessary members
from the ground structure is called ground structure approach, and the paper by Dorn et al. (1964)
is usually cited as the first work of this kind. There have been extensive researches based on this
approach since 1960s (Dobbs and Felton 1969), and those are listed in the review articles by Kirsch
(1989b), Topping (1984) and books such as Rozvany (1997).

Topology optimization problem is virtually a combinatorial optimization problem with 0-1
variables for existence of members. The problem becomes a mixed variable problem if the cross-
sectional areas of the existing members are also to be optimized. In the traditional ground structure
approach, optimal trusses are found by considering the cross-sectional areas as continuous design
variables, and the members with vanishing cross-sectional areas are removed to obtain the optimal
topology.

Let Ai and Li denote the cross-sectional area and the length of the ith member. The number
of members in the initial ground structure is denoted by m: Only inequality constraints gj � 0
(j = 1; 2; � � � ; n) are considered. The truss topology optimization problem for minimizing the total
structural volume is written in a form of nonlinear programming as

P1: Minimize V =
Pm

i=1 AiLi

subject to: gj � 0; (j = 1; 2; � � � ; n)
Ai � 0; (i = 1; 2; � � � ;m) (2:1)

2.2 Optimization Methods

Since topology optimization problem is formulated as a nonlinear programming problem,
optimal solutions may be found by using an appropriate mathematical programming approach
such as sequential quadratic programming and method of modified feasible directions. Optimality
criteria methods may also be effectively used for the simple cases such as stress and/or displacement
constraints for static loads. Among many methods of nonlinear programming, sequential quadratic
programming is said to be most robust and accurate. Recently, new algorithms such as interior point
methods (Ben-tal and Nemirovski 1994, Koc

�
vara 1997) and semi-definite programming (Ben-Tal

and Nemirovski 1996, Fujisawa et al. 1999) have been shown to be very effective for special cases.

In the process of removing unnecessary members, the truss may become unstable due to
existence of a node without any member connecting to, or existence of a hinge that connects
only two colinear members. A small lower bound Ā is therefore given as follows to prevent the
instability:

Ai � Ā; (i = 1; 2; � � � ;m): (2:2)

Note that Ā has a very small positive value, and the member with Ai = Ā should be removed from
the final optimal solution; i.e. Ā is introduced to avoid numerical instability in the optimization
process, and not to avoid unstable optimal solution. A possibility of obtaining an unstable solution
may be reduced by considering multiple loading conditions. The method based on boundary
cycle to restrict the feasible solution only to the truss consists of stable units may also be useful
(Nakanishi and Nakagiri 1996a,b). Including topological constraints and constraints on the shape
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of the triangular unit is very useful to obtain practically acceptable designs (Nakanishi and Nakagiri
1997, Ohsaki and Kato 1999).

Although an optimal solution are found by simply applying a nonlinear programming approach,
it is very difficult to find the global optimal solution even for a simple problem with stress and/or
displacement constraints. Efficiency of the solution may be evaluated by comparing the objective
value with a lower bound value that can be found by solving a linear programming problem
neglecting the compatibility conditions (Kirsch 1989a).

The optimal topology for the stress constraints considering single loading condition is derived
as a solution of a linear programming problem with member forces as design variables (Dorn et al.
1964, Ringertz 1985). The solution is globally optimal if the optimal truss is statically determinate.
For the case where the optimal topology is unstable, some members should be added or the unstable
joints should be fixed. Ringertz (1986) presented a branch-and-bound method for finding globally
optimal topology and cross-sectional areas for a problem with stress and displacement constraints.
The lower bound of the objective value of the optimal solution for the current topology is calculated
by neglecting the stress constraints. The lower bound may also be found by neglecting displacement
constraints in stead of stress constraints (Sheu and Schmit 1972).

Minimization of compliance under single loading condition without upper bound for the cross-
sectional area is considered as a min-max problem for minimizing the compliance with respect
to the design variable simultaneously maximizing the total potential energy with respect to the
displacements (Ben-tal and Bendsøe 1993, Bendsøe et al. 1994). A strictly convex dual problem
is then formulated and is efficiently solved by a primal-dual approach (Beckers and Fleury 1997).

Recently, new methods such as Genetic Algorithm (GA) has been successfully applied to
structural optimization problems (Jenkins 1991). Grierson and Pak (1993) applied GA to a frame
topology optimization problem, where the lists of topologies and cross-sectional properties as
well as the nodal locations are encoded into binary strings. The null cross-sectional area is also
included in the list to enable the removal of members. Hajela and Lee (1995) presented a two-
level approach to ensure the stability of the truss. They also presented a scaling approach for
constrained optimization problems, where the increase of the penalty term is limited to avoid too
much penalty compared with the objective value. Ohsaki (1995) applied GA for finding optimal
topology considering the nodal costs, and showed that the optimal topology strongly depends on
the ratio of the costs between members and nodes. He also showed that the use of topological
variable in addition to the cross-sectional area leads to a rapid convergence to a solution with small
number of nodes and members from a highly connected ground structure.

There are also other heuristic approaches for topology optimization. Recently, some evolution-
ary approaches have been presented. The term evolutionary is very confusing because it is used
in several different meanings. A GA with evolving parameters may be called evolutionary, or just
simple GA may be an evolutionary approach (Kwan 1998). The algorithm with local rules like
optimality criteria, and just a growing processes are also evolutionary.

Although there are many limitations in the use of ground structure approach, it is widely used,
and is a kind of standard procedure in this field. Difficulties in the ground structure approach are
summarized as

1. Too many members and nodes are needed in the initial design, and addition of members and
nodes is very difficult.

2. The optimal topology strongly depends on the initial design, and infinite number of nodes and
members are needed if the nodal locations are also to be optimized.

3. Unrealistic optimal solutions are often obtained.
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4. The truss becomes unstable if too many members are removed.

Contrary to the ground structure approach, some methods have been proposed for adding nodes
and members from a simple base truss to generate an optimal topology (Rule 1994, McKeown
1998). The drawback of obtaining unrealistic or unstable optimal solutions may be avoided if this
growing process is used. There is no theoretically clear criteria, however, for addition of nodes
and members (Kirsch 1989b, Kirsch 1996). Modification process of topology may be written in a
formal grammar (Reddy and Cagan 1995a,b, Suea et al. 1997). Bojczuk and Mróz (1999) used
sensitivity information to determine whether the candidate topology modification is acceptable.

Simulated Annealing (SA) is also useful for topology optimization (Topping et al. 1996,
Tagawa and Ohsaki 1999). The advantage of using SA is that both continuous and discrete
variables are included without any difficulty. Tabu search may also be very effective for truss
topology optimization (Bennage and Dhingra 1995). Since computational cost for analysis is
very large for these stochastic or heuristic methods, an efficient method for reanalysis should be
incorporated for reducing the computational cost (Kirsch 1993, Kirsch 1995, Kirsch and Liu 1995).
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Figure 2. A three-bar truss with multiple loading conditions.
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Figure 3. The feasible region of the three-bar truss.

2.3 Stress Constraints

The difficulties in topology optimization under stress constraints considering multiple loading
conditions are first discussed by Sved and Ginos (1968). Detailed discussions on singularity of
the solution may be referred to Kirsch (1990). Main difficulty for solving this problem with stress
constraints is that the constraint need not be satisfied by a member to be removed.
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Consider a three-bar truss as shown in Figure 2. (Sved and Ginos 1968). Let �ki denote the
stress of the ith member for the kth loading condition. The three loading conditions (Pj ; �j) =
(40; �=4); (30; �=2); (20; 3�=4) are considered. The upper and lower bounds for the stress (�Li ; �

U
i )

are (�5; 5); (�20; 20); (�5; 5): The objective function is V = A2 +
p

2(A1 + A3):

The optimal solution that minimizes V under stress constraints for three loading conditions
is A1 = 8; A2 = 1:5; A3 = 0; where V = 12:812: Note that the stress of member 3 for P3 is 21.4
which violates the constraint. The stress constraint, however, need not be satisfied because A3 = 0:
The optimal solution satisfying all the constraints is A1 = 7:099; A2 = 1:849; A3 = 2:897; where
V = 15:986 which is greater than the objective value 12.812 of the true optimal solution. This
result suggests that the optimal solution is a singular point in the feasible region. The feasible
region for this problem is illustrated in Figure 3 on the A1�A2 plane. Note that the feasible region
includes the line BC in addition to the shaded region.

Considering the discontinuity in the constraints, a ground-structure-type topology optimization
problem with stress constraints is formulated as

P2: Minimize V =
Pm

i=1 AiLi

subject to: �Li � �ki � �Ui ; for Ai > 0
(j = 1; 2; � � � ; n; k = 1; 2; � � � ; f )

Ai � 0; (i = 1; 2; � � � ;m) (2:3)

where f is the number of loading conditions. The formulation above indicates that the stress
constraints should be relaxed in the vicinity of Ai = 0: Cheng and Guo (1997) presented the
"�relaxation method for obtaining the optimal topology by successively solving the relaxed prob-
lems. In their method, the stress constraints are relaxed as

(�Li � �ki )Ai � " (2:4a)

(�ki � �Ui )Ai � " (2:4b)

Ai � "2 (2:4c)

where " is sufficiently small. The optimal topology may be found by reducing " to 0.

Note that the stress �ki of a removed member cannot be calculated from the axial force Nk
i as

�ki =
Nk
i

Ai

(2:5)

because Nk
i = Ai = 0: The strain eki ; however, can be calculated from the axial deformation dki ;

which is easily found from the nodal displacements, as

eki =
dki
Li

(2:6)

and the stress may be defined by
�ki = Eeki e (2:7)

where E is the elastic modulus (Cheng and Jiang 1992). Therefore, there is no discontinuity in
�i itself at Ai = 0 if the truss after removal of the ith member is stable, and if the definition
Equation (2.5) is always used in stead of Equation (2.4); i.e. only the definition of the stress
constraints is discontinuous.
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For pin-jointed trusses, the lower bound �Li may be replaced by the Euler buckling stress if the
local buckling is considered (Cheng 1995, Smith 1997). The optimal topology strongly depends on
existence of local buckling constraints and on the limits of the stresses in tension and compression
especially for bridge-type structures (Achtziger 1996, Oberndorfer et al. 1996).

Existence of slender members can be avoided by including local buckling constraints. Global
instability, however, cannot be considered by this formulation. The instability due to existence of
unstable hinges between two colinear members may be avoided by fixing the hinge to obtain a truss
with long members. In this case, however, the local buckling stress changes in accordance with the
change in the member length and the slenderness ratio, and the constraints on local buckling might
be violated. One possible solution to avoid the existence of unstable optimal topology may be to
include constraints on global buckling explicitly in the problem formulation (Rozvany 1996, Zou
1996). In this case, however, unrealistic very slender members exist in the optimal topology, which
has been pointed out by Nakamura and Ohsaki (1992) for a problem with frequency constraints.
The possibility of obtaining a truss with long members may be reduced by introducing constraints
on slenderness ratio (Achtziger 1999a,b).

2.4 Frequency Constraints

There are very few papers on topology optimization of trusses for specified fundamental
frequency due to difficulties arising from local instability and multiplicity of the lowest frequency
(eigenvalue). Let Ms and M0 denote the mass matrices due to structural and nonstructural masses,
respectively. The eigenvalue problem of vibration is formulated as

K�r = 
r(Ms + M0)�r; (r = 1; 2; � � � ; n) (2:8)

where
r and�r are the rth eigenvalue and eigenvector, respectively, and n is the number of freedom
of displacements. The eigenvector �r is normalized by

�
T
r (Ms + M0)�r = 1; (r = 1; 2; � � � ; n) (2:9)

Let 
̄ denote the specified lower bound of the eigenvalues. The topology optimization problem
for specified fundamental eigenvalue is formulated as

P3: Minimize V =
Pm

i=1 AiLi

subject to: 
r � 
̄ (r = 1; 2; � � � ; n);
Ai � 0; (i = 1; 2; � � � ;m) (2:10)

The optimal topology is found by removing the members with Ai = 0 as the result of optimization.
A small positive lower bound is usually given for Ai throughout the optimization process in order
to prevent instability of the structure.

If the fundamental eigenvalue of the optimum design is simple, P3 may easily be solved by
using a nonlinear programming or an optimality criteria approach (Venkayya and Tishler 1983,
Sadek 1989), because there is no difficulty in calculating the sensitivity coefficients of 
1 with
respect to Ai: It is well known, however, that the optimal topology often has multiple lowest
eigenvalues. In this case, only directional sensitivity coefficients or subgradients can be calculated
(Haug and Cea 1981). Although some formulations of sensitivity analysis of multiple eigenvalues
have been presented (Haug and Choi 1982, Lund et al. 1994), it is not clear if those formulations
can be used for topology optimization.
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Nakamura and Ohsaki (1989) presented a parametric programming approach to trace a set of
optimal solutions under multiple eigenvalue constraints and extended it to truss topology optimiza-
tion (Ohsaki and Nakamura 1992). It has also been shown that their method can be applied to
topology optimization of frames (Ohsaki and Nakamura 1993).

Since components of K and Ms are proportional to Ai; those are written as

K =
mX
i=1

AiKi; Ms =
mX
i=1

AiMi: (2:11)

By using the Rayleigh’s principle, the constraint of Equation (2.10) is converted as

mX
i=1

(Ki � 
̄Mi)Ai � 
̄M0 � O (2:12)

which means the matrix in the left-hand side should be positive semidefinite. Fujisawa et al. (1999)
presented a method based on Semi-Definite Programming (SDP) (Kojima et al. 1997), and showed
an optimal topology with five-fold fundamental frequencies can be found without any trouble,
because SDP does not need sensitivity information of eigenvalues.

Figure 4. A simple three-bar truss with unstable joint.

Another difficulty in frequency constraints is the existence of local modes due to instability at
the joints (Nakamura and Ohsaki 1992). Consider a simple three-bar truss as shown in Figure 4.
If the nonstructural mass at node 3 is sufficiently large compared with the total structural mass,
the lowest eigenmode at the initial design with uniform cross-sectional areas is such that the nodes
2 and 3 moves horizontally, and the axial deformation of member 3 is negligibly small compared
with those of members 1 and 2. This type of mode associated with vibration of nonstructural
masses is referred to as global mode. Since the axial deformation of member 3 is negligibly small,
A3 decreases as the optimization process proceeds. It is obvious, however, that the pin-jointed
truss is unstable if member 3 is removed. Consequently, there exists a secondary member with
extremely small cross-sectional area and two lowest eigenvalues coincide in this simple truss.
In this case, one of the fundamental eigenmode is such that node 3 vibrates vertically and the
vibration of nonstructural mass is negligibly small. This type of mode is referred to as local mode
in the following. From the practical point of view, however, the optimal topology with secondary
members are not needed, and the designers are not interested in the local mode which is simply
suppressed by adding flexural stiffness at the joints.
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Figure 5. A 5� 5 plane square grid.

Figure 6. Optimal topology of 5� 5 grid.

The optimal topology of a 5 � 5 plane square grid as shown in Figure 5 after removing
extremely slender members is as shown in Figure 6. Note from Figure 6 that there exists a
kind of net with secondary members for preventing instability of the ten-bar truss formed by the
primal members with moderately large cross-sectional areas. Those secondary members cannot be
removed because the two long members, each composed of five short members, will be unstable
without those members. The multiplicity of the lowest eigenvalue is two, and the corresponding
modes are as illustrated in Figure 7. It may be observed from Figure 7 that the displacements of
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node 9 where the nonstructural mass is located is very large in the mode (a), whereas local flexural
deformation at node 1 dominates in the mode (b). A practically optimal topology may be found,
if necessary, by removing the secondary members and fixing the unstable nodes 1-8 in Figure 5 to
generate a frame with two members. Note that the node 9 is not fixed.

Mode(a)

Mode(b)

Figure 7. Eigenmodes of optimal 5� 5 grid.
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2.5 Simultaneous Optimization of Topology and Geometry

Geometries or nodal locations of trusses are easily optimized by solving a nonlinear program-
ming considering the nodal coordinates as continuous design variables (Imai and Schmit 1982,
Lin et al., Dems and Gatkowski 1995). Usually side constraints or linking on design variables
are introduced for avoiding intersection of members (Saka 1980, Ohkubo and Asai, 1992, Sadek
1986). Therefore, topology cannot be optimized by simply varying the nodal coordinates. Since
unrealistic shape may be obtained if all the nodal coordinates are considered as independent design
variables, it is useful to use parametric forms of curves and surfaces (Ohsaki et al. 1997, Ohsaki et
al. 1998).

Simultaneous optimization of topology and geometry is rather easy if the members can have
arbitrary positive cross-sectional areas. Rozvany presented series of works for layout optimization
based on analytical optimality criteria (Zou and Rozvany 1991). Applicability of his method,
however, depends on the types of constraints. His method also needs thousands of members to
optimize the geometry of trusses. Rajeev and Krishnamoorthy (1997) presented a GA-based method
for optimizing the nodal locations and cross-sectional areas of trusses of candidate topologies.

For the trusses where the selections of the member cross-sectional areas are limited, the problem
becomes very difficult. The difficulties are summarized as (Ohsaki 1997)

1. Existence of extremely short members or elimination of some members leads to singularity of
the stiffness matrix.

2. A member which has larger cross-sectional area is generated if coalescent members are simply
combined into single member. The global stiffness changes discontinuously, on the contrary,
if some among the coalescent members, leaving only one member, are removed.

3. Additional side constraints are needed to restrict the relative displacement of the closely spaced
nodes; i.e. the relative displacements between two nodes is not a continuous function of the
distance of the nodes.

4. Any node or member cannot be removed completely during the optimization process, because
once-removed node or member may turn out to be necessary to exist in the final optimal
solution.

The most simple approach for this problem is to find optimal geometries for several possible
topologies (Shiraishi et al. 1981). The topology and geometry may be successively optimized
by a two-level approach (Bendsøe et al. 1994). Ohsaki (1997) presented a continuous topology
transition model for a regular plane truss, and extended it to general plane trusses (Tagawa and
Ohsaki 1999).

3. CONTINUUM STRUCTURAL TOPOLOGY OPTIMIZATION

Continuum structural topology optimization differs quite significantly from discrete structural
optimization as described in the preceding section. The primary difference is that the structure
is treated as a solid continuum of variable topology, rather than as a finite system of beam/truss
elements. The continuum approach originally evolved from distributed parameter approaches to
shape optimization, as for example optimization of the distribution of thicknesses in plate structures
[Olhoff, 1981]. As regions of “zero plate thickness” represented “holes” in the plate structure, it
was realized that distributed parameter optimization techniques were able give rise to design and
describe structures of variable topology. Structural topology optimization via distributed parameter
optimization techniques per se was first proposed by Kohn and Strang [1986] and first demonstrated
by Bendsoe and Kikuchi [1988].
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3.1 Description of Structural Material Arrangements

In continuum structural topology optimization, the complete undeformed spatial domain 
B

of the structure being designed is designated. The structural domain can be decomposed into a
designable region
D and a non-designable region
N in which the structural design is prescribed.
The layout or arrangement of a pre-selected structural material in 
D remains to be determined
and so this region is called designable. A set of single or multiple loading/boundary conditions
to which 
B will be subjected are specified and a starting design b(0) which specifies the initial
material layout in the
D is selected. For each set of loading/boundary conditions, the performance
of the structure is analyzed, with quasi-static behaviors, dynamic, and free-vibrational behaviours
all treatable. For the sake of simplicity in explanation, attention will first be restricted to quasi-
static single loading conditions. The objective of the design process is to iteratively improve upon
the initial arrangement of structural material in 
D until an optimum design with the desired
performance and “cost”y characteristics is achieved. Accordingly, an objective functional which
measures the mechanical performance characteristics of interest in the structure must be specified,
along with constraint functionals and side constraints on the design variables.

A system is clearly needed to describe the the spatial distribution of structural material through-
out the spatially fixed structural domain
D. In designing the shape/topology of a structural system
that uses only one structural material A , the binary indicator function describing the arrangement
of the material would be:

�A(X) =
n

1 if material A fully occupies point X 2 
D

0 otherwise

o
; (3:1)

One can think of regions not occupied the structural material A as being occupied by a fictitious
void material B whose indicator function would be:

�B(X) =
n

1 if material B fully occupies point X 2 
D

0 otherwise

o
: (3:2)

The respective domains 
A and 
B occupied by materials A and B would simply be:


A = fX 2 
D j �A(X) = 1;�B(X) = 0; g (3:3a)


B = fX 2 
D j �B(X) = 1;�A(X) = 0; g (3:3b)

It is generally preferred to obtain final material distributions 
A and 
B that satisfy Equa-
tions (3.3). Such distributions are achieved, however, using continuous formulations which permit
various forms of mixtures to exist throughout the design domain
D in intermediate, and even final
states. By permitting mixtures, the material phases A and B are allowed to simultaneously and
partially occupy an infinitesimal neighborhood about each spatial point X in
D. In describing the
mixtures, the binary indicator functions above are no longer useful, but a variety of straightforward
and continuous generalizations of the binary indicator function concept are available. In fact,
some of the primary differences among the myriad of continuum structural topology optimization
formulations that have been presented in the literature result from the treatment of local mixtures.

The purpose of mixture descriptions is to provide mechanical performance characteristics (such
as elastic stiffness) to local mixtures in 
D. In a broad sense, two general methods for treatment
of material mixtures have been employed in continuum topology optimization:

y In continuum topology optimization, “cost” is typically associated with the volume or mass
of structural material used.
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(1) so-called relaxed formulations in which the arrangement of structural material in a local
mixture has a definite micro-structure which can be described and quantified through a number
of morphologic parameters which will also serve as the distributed parameter design variables.
The effective mechanical properities of the local mixture can then be obtained using a variety
of homogenization and/or micro-mechanics techniques.

(2) heuristic mixing rules which assume and involve no microstructure.

Characteristic of the relaxed formulations utilizing an assumed micro-morphology is the structured
porous solid approach proposed by Bendsoe and Kikuchi [4] and widely used in structural topology
design to find optimal distributions of solid and void phases. In this method, local mixtures take
the form of an assumed periodic porous medium with morphology parameters (a, b, �) which
represent, respectively, the normalized dimensions of the rectangular pores and the pore orientation.
Computational homogenization is employed to calculate the effective elastic constants for a discrete
sequence of morphology parameters and then in topology optimization numerical interpolation is
employed to compute effective elasticity properties of solid-void mixtures for any intermediate
values of the morphology parameters.

Rank−2 laminate 
 microstructure [7−9].

Material Layout with 
 Alternative Composites/
    Mixtures

 Microstructure−free
 mixtures [5,6,15−19,30].

Porous solid micro−
structure [4,28].

Elliptical inclusion in
 matrix microstructure
 [11].

Figure 8. Schematic of variable topology material layout design
formulations using alternative classes of composites and/or amor-
phous mixtures.

A conceptually similar method has been used by a number of investigators (for example, Jog
et al [7]; Bendsoe et al [8]; Allaire and Kohn [9]) who employ structured, rank-2 plane stress
laminates in two-dimensions to mix a linear elastic solid phase and a void phase. In the formulation
of Jog et al [7] the laminates are self-adaptive in that their orientation (�) adjusts to the local strain
field to provide a stiff local mixture or “composite” [10]. One strength of this approach is that for
linear elastic and void constituents, analytical formulae rather than computational homogenization
is employed to calculate the effective mechanical properties of the mixture. It is recognized,
however, that as modeled the self-adaptive laminates are very stiff and do not penalize mixtures of
materials in compliance minimization problems as strongly as the homogenization methods do. One
consequently ends up with final material layout designs that yield high overall structural stiffness
designs by making extensive usage of stiff “mixtures” or “composites.” From a construction
viewpoint, the designs obtained with such solid-void composites are infeasible.

Still another relaxed formulation based on an assumed micro-morphology in the material layout
is the Mori-Tanaka mixing rule employed by Gea [11]. The Mori-Tanaka mixing rule [12] is based
on the physical assumption of dilute suspensions of ellipsoidal particles of material A embedded
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in a matrix of material B and uses analytical Eshelby solutions [13] to predict the elastic properties
of the mixtures based solely on the volume fraction and assumed particle shapes and orientations of
the respective phases. This mixing rule can in principle be used in inelastic topology optimization
since its usage for inelastic materials is already established as, for example, in the constitutive
modeling of elastoplastic particulate composites [14].

The second general class of continuum topology optimization formulations utilize amorphous
treatments of mixtures, in which no specific micro-structure is assumed or utilized. The class of
mixing rules which assume no micro-morphology of the mixture have the advantage (when used
with isotropic materials) of using only a single scalar volume fraction or density parameter to
characterize the two-material mixtures in both two and three dimensions. Most prominent among
the mixing rules in this category are the simple density based power laws originally investigated
by Bendsoe [15] and now widely used by others [16–19], and also the classical Voigt-Reuss
mixing rule approaches proposed by Swan et al [1997,1998,1999]. While these mixing rules do
not necessarily have an underlying physical basis, they have been effectively and convincingly
employed in structural topology optimization, and are being increasingly used due to their relative
simplicity. They are also readily usable with general elastic and/or inelastic structural materials [6].

As an example, the local volume fraction of a structural material A at a fixed spatial point X in
the design domain 
D is denoted by �A(X) and represents the fraction of an infinitesimal volume
element surrounding point X occupied by material A . The volume fraction for the void material
would simply be the porosity of the mixture. Natural constraints upon the spatial volume fractions
for the two-material problem are:

0 � �A(X) � 1; 0 � �B(X) � 1; �A(X) + �B(X) = 1: (3:4)

Since the last physical constraint of (3.4) states that the solid and void volume fractions at X are
not independent, the solid-void mixes can be defined through a single parameter, which is often
called either the solid volume fraction or the local density. Simple volume fraction descriptions are
simply continuous generalizations of binary indicator functions.

In most continuum topology optimization frameworks, the structure’s design region 
D will
be discretized into NEL low-order finite elements such as bilinear plate/shell shell elements or
trilinear three-dimensional continuum elements. For these low-order elements, NC design variables
describing the presence and arrangement of structural material A in each element are taken as
piecewise constant. The designable distribution of material phase A in 
D can thus be described
by a vector of NCxNEL design variables b.

3.2 Mixing Rules

Since each finite element in the model of the design domain
D contains two material volume
fractions of general elastic or inelastic solids, a critical issue that must be addressed is how these
materials are combined at the finite element level, or more basically at the integration point level,
to form effective stress-strain relations. Toward this end, the basic properties and characteristics of
Voigt, Reuss, hybrid Voigt-Reuss, and power-law mixing rules are reviewed here.

In a strict sense, the physical motivation behind the classical Voigt and Reuss mixing rules
has significance only for the very special case of one-dimensional composites or mixtures. For
such mixtures, the Voigt rule assumes that the phases are arranged in parallel (Figure 9) so that
when loaded axially the strain in each material will be the same. The Reuss rule assumes the
phases are arranged in series so that the stress in each will be the same. The one-dimensional Voigt
arrangement leads to very stiff, strong mixtures, whereas the Reuss arrangement leads to compliant
and weak behaviors (Figure 9).

14



Discrete and Continuum Structural Topology Optimization M. Ohsaki and C.C. Swan

0
Material A Volume Fraction, φA

0.5 1.0

Emix

Voigt Rule
   (α = 1)

Reuss Rule
    (α = 0)

EB

EA

Combined Rule
     (0 < α < 1)

Stiffness Behavior

Powerlaw Rule
  1 < p < ∝

Hybrid Voigt/Reuss Mixing Rules

EA,YA

EB,YB

EA,YA EB,YB

φΑ,φΒ

Voigt partition (α)

Reuss partition (1−α)

Figure 9. Schematic of effective stiffnesss of hybridized Voigt-
Reuss mixtures and Power-law mixtures. For the diagrams shown,
material A is taken to be stiffer than material B .

For multi-dimensional mixtures, it is generally not possible to devise an equilibrium arrange-
ment of materials that satisfies either the Voigt or Reuss conditions for all potential loading
conditions [22]. Nevertheless, the Voigt and Reuss rules can be generalized to higher dimensions
simply by assuming that the phases share the same local strain tensor (Voigt) or the same local stress
tensor (Reuss) under all possible loading conditions. Accordingly, the decomposition equations
for the Voigt mixing of two general phases at a given material point X are as follows:

�Voigt = �A = �B (3:6a)
�Voigt = �A�A(�) + �B�B(�): (3:6b)

The corresponding decomposition equations for the Reuss mixing of two general phases are:

�Reuss = �A�A + �B�B (3:7a)
�Reuss = �A(�A) = �B(�B): (3:7b)

For the hybrid Voigt-Reuss mixture (Figure 9), the assumption is that both branches of the mixture
have the same strain and that the volume fraction of the total mixture in the Voigt branch is
� 2 [0; 1] and that in the Reuss branch is 1� �. Accordingly, the effective stresses and strains of
the partitioned mixture are:

� = �Voigt = �Reuss (3:8a)
� = ��Voigt + (1� �)�Reuss (3:8b)

Similarly, the effective stresses and strains in the powerlaw mixing rule are based on the assumption
of uniform strain, but non-uniform stress:

�Power�law = �A = �B (3:9a)
�Power�law = �p

A
�A(�) + �p

B
�B(�) (3:9b)

where p 2 [0;1). The limit p = 0 recovers the Voigt mixing rule while the limit p!1 recovers
the Reuss mixing rule.
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3.3 Special Case: Linear Isotropic Solid and Void Materials

Application of the Voigt and Reuss mixing rules to the treatment of elastic and inelastic solids
has been treated in [6]. Here attention is confined to the special case of mixing a linear isotropic
elastic solid phase and a void phase. Young’s modulus E and Poisson’s ratio � are commonly
used material constants to characterize the elasticity tensor of linear isotropic elastic solids. In a
mixture of a linear isotropic elastic solid and a void phase, the void phase does not contribute to
the stiffness of the mixture. For simplicity, one can therefore choose the Poisson’s ratio of the void
phase as equal to that of the solid phase, �void = �solid. Thus, only the effective Young’s modulus
for the mixture Emix needs to be computed since the Poisson’s ratio of the mixture will be equal to
that of the solid and void phases, �mix = �void = �solid.

In the Voigt mixing rule, usage of isostrain conditions (3.6a) gives an effective Young’s modulus
of the mixture as:

EVoigt = �solidEsolid + �voidEvoid: (3:9)

Similarly, using the Reuss isostress assumption (3.7) gives an effective Young’s modulus for the
mixture as

EReuss = [
�solid

Esolid
+
�void

Evoid
]�1: (3:10)

For mixtures containing both Voigt and Reuss partitions, the effective Young’s modulus for the
mixture is simply

E = �EVoigt + (1� �)EReuss (3:11)

where � is the volume fraction of the mixture in the Voigt partition. With the Powerlaw mixing
rule,

E = �psolidEsolid + �pvoidEvoid: (3:11)

Although the Young’s modulus Evoid of the void phase is theoretically zero, a small stiffness Evoid

compared to that of the solid phase Esolid must be maintained to avoid singularity of the finite
element equations. In the event that the stiffness of the void phase is chosen too large, the structure
will derive some stiffness from the void phase, which is unrealistic. Striking a balance between
these two extremes, the stiffness ratio is taken as Evoid

Esolid
= 10�6 since numerical experiments show it

to provide very good performance and results.

For the special case under consideration, an advantage of mixing rule formulations is that the
stiffnesses of mixtures can be written as simple, analytical, and differentiable expressions of the
volume fractions (�solid; �void). As will be discussed below in the context of design sensitivity
analysis, the quantity @�

@�A
ju must be computed. For the special cases under consideration, this

quantity is easily computed as
@�

@�solid
ju =

@C
@�solid

: �: (3:12)

To evaluate @C
@�solid

in (3.12), one needs only to take the derivative of the effective Young’s modulus
E with respect to the design variables. That is,

@EVoigt

@�solid
= Esolid � Evoid (3:13a)

@EReuss

@�solid
= [

1
Evoid

� 1
Esolid

][�solidEsolid + �voidEvoid]�2 (3:13b)
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The derivative of E for hybrid mixtures is thus simply

@E

@�solid
= �

@EVoigt

@�solid
+ (1� �)

@EReuss

@�solid
+ (EVoigt �EReuss)

d�

d�solid
: (3:14)

For the Powerlaw mixtures the derivative of E is simply:

@E

@�solid
= p�p�1

solidEsolid + p�p�1
voidEvoid (3:15)

3.4 Objective and Constraint Functionals

Numerous formulation options exist in structural topology design optimization in terms of
utilizing assorted combinations of objective and constraint functionals. It is useful to distinguish
between purely cost based functionals which are independent of the response of the system being
designed (that is F = F (b)) and performance based functionals which by definition depend upon
both the design variables b and the performance or state of the designed system which can generally
be described in terms of u, the vector displacement field (that is F = F (b;u)).

An example of a pure cost functional for the structural topology optimization problem is the
overall volume fraction of one of the candidate constituent phases, defined as:

F�A =< �A > �CA (3:16)

in which < �A > represents the volume average of �A over the entire analysis domain 
B. In
contrast, the global strain energy functional over the analysis domain for general loading conditions
is a performance functional and would be defined as

FE =

tZ

0

Z

B

� : _� d
B d� (3:17)

where � is a parametric time variable. A typical topology design optimization problem might be
to minimize the strain energy functional FE of the structure under applied force loadings (thereby
maximizing the stiffness of the structure for the applied loads), subject to a volume constraint on
phase A . Alternatively, an equally viable way to pose the problem would be to minimize the
global volume fraction of material phase A subject to a constraint on the strain energy functional
of the system. Commonly used performance functionals for linear elastic structural problems are
the strain energy functional and eigenvalue functionals while examples of pure cost functionals are
global volume fraction constraints; perimeter constraints [29,37]; and intermediate volume fraction
penalization functionals [29,37], among many others.

The topology design optimization process is iterative in nature, requiring the solution of an
analysis problem with each new variation of the design (Figure 10). Intermingled with solving the
analysis problem is the evaluation of the objective and constraint functionals as well as their design
gradients. The following two subsections briefly review the general linear analysis and design
sensitivity analysis problems.
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Initialize:
   Create FEM mesh of ΩD
   Select initial topology b0
   Specify boundary/loading conditions
   k=0

Analysis Problem for bk 
   Compute functional values
   Compute design gradients of functionals

Optimality/feasibility satisfied?
 or    k = kmax?

Update design using gradient information
    bk+1= bk + ∆bk(gradients)
    k = k + 1

No

ExitYes

Figure 10. Topology design optimization algorithm.

3.5 Structural Analysis Problems

3.5.1 Linear Quasi-Static Analysis

Topology design can be performed to find the optimal layout of a structure to: minimize
compliance; maximize strength; tailor eigenvalues; and tune dynamic response. These varied
objectives require the solution of elliptic boundary value problems; eigenvalue problems; and
hyperbolic initial and boundary value problems. Here, the static elliptic boundary value problems
are described, and in the following subsection, vibrational eigenvalue problems are described.

If attention is restricted to the class of problems requiring solution of linear static elliptic
boundary value problems, then the equilibrium state equation of the discrete structure is:

rA = fintA � fextA = 0 (3:18)

where

fintA =
Z

B

BT
A :� d
B

:
= KAB � dB (3:19a)

fextA =
Z

B

�NAf d
B +
Z
�h

NAh d�h: (3:19b)

3.5.2 Design Sensitivity Analysis

Due to the large number of design variables, continuum structural topology optimization is
typically performed using gradient based optimization techniques. Thus the analysis program must
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return design gradients of the objective and constraint functionals to the optimizer. For performance
functionals, one must be able to compute:

dF (b;u)
db

=
@F
@b

+
@F
@u

@u
@b

: (3:20)

From (3.18) it is clear that
dr
db

= 0 (3:21)

which leads to
du
db

= �K�1 @r
@b

(3:22)

which can be inserted into (3.20) to yield

dF
db

=
@F
@b

� ua � @r
@b

(3:23)

where ua, the “adjoint displacement vector”, is the solution of the “adjoint problem”

K � ua = �@F
@u

: (3:24)

In many topology design optimization problems, the objective is to minimize the compliance
(or maximize the stiffness) of a structure to which set of fixed external loads fext are being applied.
Minimization of the strain energy or compliance functional (4.2) associated with a prescribed
loading maximizes the stiffness of the structure under the prescribed loading condition. With
attention restricted to linear elastic structures, the strain energy functional reduces to the especially
simple form:

FE =
1
2

fext � u: (3:25)

The displacement field that solves the equilibrium condition (3.18) for linear elastic structures is
simply u = K�1 � fext; and the corresponding adjoint displacement vector ua that solves the adjoint
problem (3.24) is merely

ua = �1
2

K�1 � fext = �1
2

u: (3:26)

As it was assumed that the external loads fext applied to the structure are independent of the design
variables b, the design gradient of the strain energy functional reduces to

dFE

db
= �1

2

Z

B

� :
@�

@b
d
B: (3:27)

The quantity @�
@b in (3.27) is here termed the “stress design gradient,” and clearly depends upon the

mixing rule being employed. The evaluation of this “stress design gradient” for all of the common
mixing rules was described in Section 3.2.
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3.5.3 Uniqueness of Solutions

When used with filtering methods[Sigmund and Diaz, 1998], stable, checkerboard-free material
layout designs can be obtained. An additional issue that arises is the uniqueness of solutions
obtained for fixed mesh discretizations of the domain
B. One can generally assume the existence
of locally optimal solutions b� such that

FE(b�) � FE(b� + �b) (3:28)

for all feasible infinitesimal variations �b of the design vector. Most continuum topology optimiza-
tion formulations when applied to linear elastic structural problems produce stable, locally optimal
solutions, and thus existence does not appear to be a major issue. y In fact, the problem encountered
with highly penalized formulations is that an excessive number of stable local minima satisfying
(3.28) exist for a given meshing of 
B. The general aim in continuum topology optimization is to
arrive at the discrete, interpretable, and constructable solutions whose performance characteristics
approach that of the mathematical global minimum solution b�g but which is invariably neither
discrete, interpretable nor manufacturable.

It was shown in [39] that usage of the stiff Voigt-like formulation leads to a uniformly convex
strain energy functionalFE, and hence unique solutions of the optimization problem for a fixed mesh
discretization of 
B, irrespective of the starting point bo or the optimization algorithm employed.
Usage of highly penalized formulations, however, does not necessarily lead to a uniformly convex
functional, and so the solution obtained will depend upon both the starting design b0 and possibly the
optimization algorithm employed. While the unpenalized Voigt solutions to topology optimization
problems may be unique, they are generally not very desirable in that they tend to be very grey,
containing large regions of mixed materials which can be very difficult to interpret. Solutions
obtained with compliant mixing rules, on the other hand, while highly discrete, will generally not
be unique. That is, many locally optimal solutions may exist, some of which have performance
characteristics approaching those of the global minimum, and some of which do not.

Given the strengths and deficiences of both extremes, it is desirable to combine the Voigt and
Reuss formulations using hybrid mixing rules to obtain the best features of both: the uniqueness
of the Voigt solutions, and the interpretability/manufacturability of highly penalized formulations.
This is presently a very active research topic [37]. One heuristic way that this has been at-
tempted [17,32] is through continuation methods in which the topology optimization problem is
begun with a stiff mixing rule, and gradually transitioned to a penalized formulation. The objective
behind the procedure is to get and keep the layout design in the convergence basin of the global
optimum while gradually transitioning to a penalized formulation that will yield a discrete and
manufacturable solution. The results shown in Section 6 and those in [17,32] demonstrate that this
approach invariably gives, interpretable and manufacturable designs, and the performance (stiff-
ness) of these designs often, but not always, exceeds the performance achieved by beginning with
pure Reuss formulations. This behavior is highly problem dependent and requires further study.

y Here, attention is restricted to the nature of solutions for fixed mesh resolutions of 
B.
To address the broader issue of the existence of mesh-independent solutions, fixed length scales
are imposed on designs either through perimeter control methods [29] or fixed length scale spatial
filters [17].
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3.6 Frequency Response Characteristics

Free vibrational modes of linear elastic structures are characterized by the eigenvalue equation

0 = (K� �lM)yl; where (3:29)

where K is the structural stiffness matrix, M the mass matrix, �l the lth vibrational eigenvalue, and
yl the corresponding eigenvector which describes the lth mode of vibration. Since each element of

s generally contains a mixture of materials, the elastic constitutive tensor C at the element level
used in computing K is provided by the mixing rules described above, while the local density of
the mixture in each element used in computing M is given by the relation

� = �A�A + �B�B: (3:30)

For solid-void structural applications, the density of the void phase �void is theoretically zero, but
a small density compared to that of the solid phase �solid is maintained to avoid singularity of the
eigenvalue equation (3.29).

One method for optimizing the overall stiffness of a structure without reference to any specific
loadings is to maximize a functional L which is a linear combination of the first K vibrational
eigenvalues:

L =
KX
k=1

�k�k (3:31)

where the �’s are vibrational eigenvalues and the �’s are non-negative constant weighting factors.
Other investigators studying application of continuum structural topology optimization to free
vibration responses of structures have proposed a range of alternative objective and/or constraint
functionals [32,40,43].

When L contains only simple nonrepeated eigenvalues, first order design sensitivity analysis
is quite straightforward since

dL
db

=
KX
k=1

�k
d�k
db

(3:32)

where
d�k
db

=
yk � (@K

@b � �k
@M
@b ) � yk

yk �M � yk
: (2:26)

When L contains nonsimple, repeated eigenvalues, sensitivity analysis for the repeated roots can
be somewhat more complicated. Unless other precautions are taken, the procedures suggested
in [41,42] for repeated roots are usually required. However, for those classes of problems where
nonsimple vibrational eigenvalues occur due strictly to the symmetry of the structure, then the sym-
metry reduction methods of [33] can be employed to alleviate the difficulty and design sensitivity
analysis of functionals containing repeated eigenvalues can proceed along the lines of (3.32) and
(3.33) without additional complications or precautions.
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3.7 Representative Examples

The examples that follow are representative of those that have been solved in the research litera-
ture with continuum structural topology optimization techniques. The solution algorithm employed
to obtain the example solutions was a variation of a sequential linear programming algorithm (SLP)
with line-searching and an LP sub-problem move limit of �M = 0:05. SLP methods are proving
increasingly popular for large-scale topology optimization applications [19,32].

3.7.1 The Three-Load Bridge Problem

The design domain 
D shown in Figure 11a is originally completely filled with a linear
isotropic solid material of properties �solid = 2:69 � 105 and �solid = 1:15 � 105, and the loading and
restraint conditions on the domain are as shown in Figure 11. This is a solid material–void material
topology design problem, where the objective is to place the solid material throughout the design
domain 
D to minimize the compliance of the structure for the loading shown, subject to a global
volume fraction constraint on the solid phase of 40 percent. This problem was solved four times
with varying Voigt-Reuss mixture parameters and using the filtering method proposed in [39].

a) FE=1.4121x10−2;    α=1.0 b) FE=2.0813x10−2;    α=0.1

c) FE=2.3522x10−2;    α=0.01 d) FE=1.6933x10−2;    α=0.00

Figure 11. Alternative topology designs and strain energy func-
tional values FE for varied mixing rule parameters �.

The pure Voigt solutions (Figure 11a) are extremely stiff and “grey”, as one might expect due to
the incompliant nature of the mixing rule, and thus lacks sharpness and clarity. Structural topology
solutions obtained with the Voigt mixing rule for a broad range of test problems visually resemble
those obtained using stiff rank-2 laminate mixing rules as, for example in [7,9]. The material layout
designs shown with penalized formulations � = 0:1; :01; 0:0 in Figures 11b–11d, even when some
grey fringes remain, appear for the most part quite interpretable.
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3.7.2 The MBB Beam Problem

Variations of this challenging test problem involving the design a European Airbus floor beam
have been solved previously in [17, 29, 35]. In the variation presented here, the simply supported
beam features a solid non-designable border 
N with a designable interior 
D. This problem is
solved withFsolid = < �solid > �0:50 � 0 and with spatial filtering. Figure 12a shows a moderately
grey layout solution obtained with a hybrid Voigt-Reuss formulation (� = :05) while results from
a continuation of the same design with a pure Reuss formulation (� = 0) are shown in Figure 12c.

2L.125L

10L

Designable Domain ΩD

F

a)   FE=1.29x10−2;  α=.05,  ω1=.05, ω2=.025

b)   FE=1.35x10−2;  α=0.0,  ω1=.05, ω2=.025

F=10
L=100
λ=1.15E5
µ=2.69E5

Figure 12. The MBB design problem, and solutions obtained with
� = 0:05 (12a), and as a continuation of the same problem with
� = 0:0 (12b).

3.7.3 The Cantilever Problem

The cantilever beam design problem (Figure 13) has been used extensively as a test problem
by a number of investigators, as for example in [9,17,19,28,31,36], with the mis-aligned version of
this problem considered to be especially challenging in that it tests the inherent mesh-dependency
(if it exists) of alternative topology design formulations. Here, we solve this as a compliance
minimization problem with a 25% global solid volume fraction constraint for both an aligned
mesh, and a mis-aligned mesh (45 x 90) consisting of rectangular elements having an aspect ratio
of 2:1.

Figure 13a shows the pure Reuss solution (� = 0) for the aligned mesh problem without
symmetry control. Even without symmetry control, the design is symmetric, as one would expect,
due to the symmetry of the mesh and the material response to the applied load. Figure 13b shows
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the design obtained when the same basic problem is solved in pure Reuss mode (� = 0) with a
misaligned mesh of rectangular elements. In this case, there is in fact some mesh dependency
of the formulation and a moderately asymmetric design is achieved. Figure 13c is a re-solving
of the same mis-aligned mesh problem using continuation (� = 1:0; :01; :0001; 0). The resulting
design still shows asymmetry in the design. Finally, to show that symmetric designs can indeed
be obtained even when the mesh is asymmetric with respect to the applied loads, the problem is
solved once again in pure Reuss mode (Figure 13d) with gross symmetry control [33,34] imposed
about the centroidal axis of the beam.

a) FE= 6.96x10−3
     α=0.0
     No symmetry control

b)  FE= 8.27x10−3
     α=0.0
     No symmetry control

L=90, L1=50, L2=80, P=10,
λ=1.15E5, µ=2.69E5
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c) FE= 1.42x10−2
    α=1.0, 0.01, 0.0001, 0.0
    No symmetry control
    

d) FE= 7.75x10−3
     α=0.0
     With symmetry control
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Figure 15. The cantilever design problem and solutions obtained.

3.7.4 Plate Vibration Problem

The design of material layout to maximize natural frequencies in a pin-supported square plate
(Figure 14) is demonstrated here. The objective function is a weighted sum L =

P5
k=1 �k�k of the

first five eigenvalues of the square plate, in which the �k and �k are respectively the kth eigenvalue
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and weighting factor. [Eigenvalues are related to eigenfrequences by the relation �k = !2
k.] Since

the structural domain 
s is square and symmetrically restrained, the second eigenvalue is non-
simple with multiplicity s = 2 with the modes shown in Figure 14b,c. This non-simple eigenvalue
is thus treated in the objective function L as the second and third eigenvalues. The eigenvalue
maximization problem was solved with material constraint < �solid > � 0:50. Figure 14d shows
the material layout solution obtained using a highly penalized mixing rule with the first eigenmode
shown.

(c) 3rd eigenmode for solid plate

A

B

C

D

ΩD

A

L

L

B

C

D

x
y

z
Esolid=7.0x109 ; Evoid=7.0x103 

ρsolid =103        ; ρvoid=10−3

νsolid =0.333     ; νvoid=0.333
shell thickness : 0.1
L=10.0

a) Boundary and Loading Conditions:
    A,B,C,D pin supported. Three design
    symmetry  planes used are shown.

d) Optimized material layout toplogy with
      resulting natural frequencies.

initial  eigenfrequencies

   ω1 =  5.902
   ω2 = 15.202
   ω3 =15.202
   ω4 =20.645
   ω5 =34.482

B

A

C

D
ω1= 4.369   β1=2.87x10−2

ω2=17.097   β2=4.33x10−3

ω3=17.097   β3=4.33x10−3

ω4=28.842   β4=2.35x10−3

ω5=40.025   β5=8.41x10−4

ωi : optimized eigenfrequencies
βi : weighting factors

L=10.856

(b) 2nd eigenmode for solid plate

A

B

C

D

B

Figure 14. Square plate eigenvalue optimization problem. a) Plate proper-
ties, restraint conditions, three design symmetry planes and natural frequen-
cies before topology optimization ; b) second eigenmode for solid plate;
c) third eigenmode for solid plate; and d) optimized plate topology (first
eigenmode shown) with resulting first five eigenfrequencies.

4. DISCUSSION/RECOMMENDATIONS FOR FUTURE RESEARCH

Although much literature has been published for truss topology optimization, there exist several
difficulties as follows to be overcome to establish really practically efficient method.

a. Computational cost for obtaining the optimal solution for a real-world problem is still too large.
More efficient algorithm should be developed using, e.g., approximation method for sensitivity
analysis and reanalysis, new approaches of mathematical programming, and techniques of
computer science such as parallel and distributed computing.
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b. Difficulties due to local instability should be overcome to find practically admissible designs.
Incorporation of practical constraints such as constraints on unit shapes may be a key idea to
avoid troubles arising from seeking for theoretically correct optimal solutions.

c. Since strictly global optima is not needed in the practical use, calculating good lower and
upper bound of the objective value is very helpful to determine the efficiency of the solution.
An interactive approach (Smith 1996) and methods based on artificial intelligence (Hajela and
Sangameshwaran, 1990) may be useful for finding a practically admissible design.

d. Many researchers believe optimal topology and geometry of trusses can be found starting from
continuum-type optimal topology (Díaz and Bendsøe 1992). The characteristics of the trusses
and continuum structures are very different, and there is no criteria for constructing truss
topology from the results of optimal finite element solutions. Possibility of finding optimal
shape of framed structures from the result of continuum type optimization process should be
extensively discussed.

The authors believe the topology optimization of trusses involves difficult mathematical back-
grounds and may be more difficult than continuum-type optimization problems. Collaboration
of the researchers in mechanical engineering, civil engineering, computer science and applied
mathematics is highly recommended toward further improvement of the optimization methods.

5. REFERENCES

References for this manuscript are presently split into two sections: those for the Discrete
Topology section, and those for the Continuum Topology section.

5.1 Discrete Topology References

Achtziger, W. (1996). “Truss topology optimization including bar properties different for
tension and compression.” Structural Optimization, 12, 63-74.

Achtziger, W. (1999a). “Local stability of trusses in the context of topology optimization Part
I: Exact modelling.” Structural Optimization, 17, 235-246.

Achtziger, W. (1999b). “Local stability of trusses in the context of topology optimization Part
I: A numerical approach.” Structural Optimization, 17, 247-258.

Beckers, M. and Fleury, C. (1997). “A primal-dual approach in truss topology optimization.”
Comp. & Struct., 64, 77-88.

Bendsøe, M.P., Ben-Tal, A. and Zowe, J. (1994). “Optimization method for truss geometry
and topology design.” Structural Optimization, 7, 141-159.

Bennage, W.A. and Dhingra, A.K. (1995). “Optimization of truss topology using tabu search.”
Int. J. Numer. Meth. Engng., 38, 4035-4052.

Ben-tal, A. and Bendsøe, M.P. (1993). “A new method for optimal truss topology design.”
SIAM J. Opt., 3(2), 322-358.

Ben-tal, A. and Nemirovski, A. (1994). “Potential reduction polynomial time method for truss
topology design.” SIAM J. Opt., 4(3), 596-612.

Ben-Tal, A. and Nemirovski, A. (1996). “Robust truss topology optimization via semidefinite
programming.” Working Paper, Faculty of Industrial Engineering and Management, Technion,
Haifa, Israel.

26



Discrete and Continuum Structural Topology Optimization M. Ohsaki and C.C. Swan
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